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MODERN LIQUID KINETICS – NOTES 
 
Modification of gas phase reaction kinetics to suit reactions in the condensed phase, or those at 
interfaces. Less well understood. The main difference is that in the gas phase reactive molecules 
are separated by space, while in solution they are separated by solvent molecules that might, and 
often do, affect the reaction. 
 
Reactions are still defined in terms of a rate (in terms of concentration) and a rate constant, 
according to the Arrhenius Equation. Typical types of reaction to be considered: 

• Relatively few reactions occur in both the gas phase and in solution, but when they do 
they occur at similar rates and show little solvent dependence. An example is 2N2O5  
2N2O4 + O2. 

• Some reactions do not occur in the gas phase at all, and have rates which vary greatly 
with solvent, e.g. Et3N + EtI  Et4N+ + I-. In this particular reaction, the rate increases 
greatly as the solvent becomes more polar, as the ions formed are stabilised in polar 
liquids. 

• Reactions between ions. It takes a very large amount of energy to form ions in the gas 
phase, but a polar solvent decreases this. They can also be formed electrochemically. 
Thus, these reactions are usually confined to the liquid state (with a few exceptions). 

• Some reactions in solution are very slow, although some are extremely fast. Can this be 
understood using a single basic theory? 

• Free radical reactions are often very fast, and are considerably different in the gas and 
liquid phases. Recent research into Spin Chemistry by observing these reactions as they 
proceed, and studying the effect of magnetic fields on them. Pairing of radicals (e.g. 
CMe3 + CMe3) requires that the spins are correctly orientated antiparallel (introduces spin 
distribution statistics). 

• Fluorescence quenching reactions. Absorbance of light and the emitting radiation from a 
higher electronic state. Anthracene is a good example – on its own spontaneous 
emission will occur, but in the presence of another molecule (e.g. perylene) the excitation 
energy is transferred to this instead of being radiated (quenching). This is called an 
energy transfer reaction, and these are some of the fastest reactions known in solution. 

 
Comparison of Liquids and Gases – 
 
Average Separation of Molecules: 
(i) Gas Phase 
Ideal gas, pV = nRT, or pVm = NAkBT 
Volume occupied by a single molecule is the molar volume divided by the number of molecules it 
contains. This implies that each molecule is separated from its neighbours by the cube root. 
Taking p as atmospheric pressure and T = 300K we obtain: 

(V/N)1/3
 = 4 x 10-9m. 

(ii) Liquid Phase 
Clearly separation will depend on concentration. Consider the concentration needed to make the 
average distance between the molecules the same as in the gas at 1 atm. 
A 1 mol m-3 solution would contain 6x1023

 molecules. Thus the volume occupied by each 
molecule is 1/Nc, where c is the molar concentration (in mol m-3). Thus to obtain the same 
separation as in the gas phase we require that: 

(NA x c)-1/3 = 4 x 10-9. 
This gives c = 26 mol m-3, i.e. 0.026M. 
 
However, this only deals with the distance between solute molecules. Concentrations of solvent 
are typically 10M, which is 10-4 mol m-3 giving separations of 5x10-10m. This also implies that the 
average solvent-solute distance is the same (since almost all the molecules present are solvent). 
Interestingly, this figure is less than the size of a typical molecule, which implies that the 
molecules in liquids are essentially touching one another (whilst moving around dynamically). 
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Fraction of the total volume occupied by Molecules: 
(i) Gas Phase 
Volume of a molecule approximately equals the molecular diameter cubed, i.e. (0.4x10-9)3. The 
volume available to the molecule will be the distance between the molecules cubed, i.e. (4x10-9)3. 
This gives the fraction of space occupied as 0.001, i.e. lots of space between the molecules 
which travel about unimpeded between collisions. 
 
(ii) Liquid Phase 
Again, diameter over separation cubed gives approx 0.5 for the fraction of space occupied. Thus, 
about half the space is full of molecules – very crowded. 
 
How far do Molecules travel between collisions: 
In the gas phase this is the mean free path, 

P
kT
σ

λ
)2(

=  

Where σ is the molecular diameter. At P = 1 atm and 300K this gives λ = 6x10-8m. This is about 
100 molecular diameters. 
 
In the liquid phase the density is about 1000 times that in the gas phase, which implies that the 
average distance a molecule travels between collisions is about 6x10-11m (only 0.1 molecular 
diameters). 
 
Collision Frequency: 
In the gas phase the time between collisions is given by the mean free path divided by the 
average velocity, and the collision frequency is the reciprocal of this. This gives a value of about 
1010 s-1. 
 
In solution we could again use the fact that the density is about 1000 times higher, which would 
imply a value of 1013s-1. This same figure can also be obtained using a different argument. As 
seen above, molecules in solution almost touch one another. This means that every time a 
molecule vibrates, which it does at a typical frequency of 1013Hz, it collides with an adjacent 
molecule – there are about 1013 collisions a second, or one every 10-13s. Since reactions can 
occur when molecules collide, the potential for very fast processes is seen. The fact that many 
reactions are not nearly as fast implies that other factors apply to slow things down, although 
these do not apply to all reactions. 
 
Diffusion in Solution 
 
(i) Translational Diffusion 
In the gas phase this occurs comparatively easily and its rate can be calculated using the kinetic 
theory of gases. But both here and in solution, observation tells us that molecules tend to diffuse 
from regions of high concentration into ones where there are not. It is also apparent that the rate 
at which this occurs depends on how rapidly the concentration varies with distance, the 
concentration gradient dc/dx. This is expressed by Fick’s 1st law of Diffusion, which relates this to 
J, the flux (number of moles of molecules passing through unit area in unit time) – 

J = - D(dc/dx) 
D is an important constant characteristic of the liquid and known as the Diffusion Coefficient. Its 
units are m2s-1. It is related to the viscosity, η, of the solution (viscosity being the bulk property 
which reflects diffusion at the molecular level) through the Stokes-Einstein equation: 

a
kTD
πη6

=  

It is interesting now to investigate how far a solute molecule in solution travels in a given time. 
(Strictly to do this we should use Fick’s 2nd Law of Diffusion which gives a relation for dc/dt, but it 
will be of no further use to us and here we shall simply quote the result). Because the motion in 

Where a is the molecular radius 
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the liquid is so haphazard and random, all the molecules move different distances, and the best 
we can do is define a root mean square distance travelled, x : x = (2Dt)1/2 
This can be used to show that it takes a day for a molecule to move about 1cm in solution! 
Clearly, translational diffusion is extremely slow. 
 
(ii) Rotational Diffusion 
For completeness, this should be mentioned, even though it will not be used. A molecule typically 
takes 10-10s to rotate, which has been shown to be slower than the number of collisions – this is 
why rotational energy is not usually quantised in solution. Although they do no rotate freely, they 
do rotate in a diffusive manner. This is particularly relevant for NMR spectroscopy (related to 
spin-lattice relaxation time). 
 
Basic Concepts of Reactions in Solution 
Start from the assumption that molecules must collide to react, but in the liquid phase this is 
determined by the translational diffusion process we have discussed. We must also remember 
that the liquid phase is also crowded. This means that to move away from one point to another in 
solution, a molecule must move others out of its way. This is clearly an activated process 
(requires energy), so an energy barrier must be overcome (typically 10-15 kJ mol-1) to move from 
one minimum energy position to another. Incidentally, this is why the viscosity of a liquid varies 
with temperature. 
 
In turn, this implies that if two molecules have diffused together, they are likely to remain together 
and make many collisions before they can separate again by diffusion – the solvent simply keeps 
them together in a way which cannot happen in the gas phase. This is termed the “solvent cage”. 
 
Evidence for the Cage Effect – 
(i) Photolysis of diazomethane in solution in a chemically inert solvent: 

CH3-N=N-CH3  CH3
. + N2 + CH3

.  C2H6 
The exact same reaction with occur with deuterated diazomethane, forming C2D6. 
Taking a 1:1 molar mixture of the deuterated and undeuterated, we would expect a mixture of 3 
products (since now CH3CD3 could form). This does not occur, and shows that radicals do not 
exist long enough to move through the solution to meet a radical of a different type – they react 
within the solvent cage. 
 
(ii) Photodissociation of iodine in solution 
It is possible to observe the loss of I2 molecules per photon of light absorbed (the quantum yield). 
In the gas phase, this equals 1 (i.e. atoms form and move apart without recombining). In hexane, 
this drops to 0.66, i.e. some I atoms recombine to form molecular I2 before they can separate. 
 
Increasing the energy of the light absorbed by decreasing the wavelength increases the value – 
the atoms are less likely to recombine in the solvent cage. This is because the molecule is formed 
with far too much energy simply to dissociate and the excess energy is given to the I atoms 
formed on fragmentation – they blast their way through the surrounding solvent cage and have 
less probability of reacting within it. 
 
Finally, we increase the viscosity of the solution to make it more difficult to escape the cage: most 
of the I atoms now recombine in the cage. 
 
Activation and Diffusion Controlled Reactions 
We have seen that when a pair of molecules comes together in solution they remain together 
whilst a large number of collisions occur. There is therefore something special about them and we 
term them an “encounter pair”. We write its formation as: 
      kd 

A + B  (AB) 
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Where kd is the rate constant for the diffusion of the molecules together. Now the molecules might 
react to form product with a first-order rate constant k1, or they may separate again if no reaction 
occurs. 
 
 
 
Now, providing that the reaction is occurring continuously we can treat the encounter pair as a 
reaction intermediate and assume that its rate of destruction to form product, or to re-form the 
separated reactants greatly exceeds its rate of formation. We may then apply the steady state 
approximation to the kinetics of the system: 
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And the overall rate of reaction is given by: 
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But experimentally we find the reaction is 2nd order with: 
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By comparison of the two equations we obtain: 
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Now consider two extreme cases: 
 
(i) The activation-controlled reaction where k1 << k-d. This is the most common type of reaction 
in solution found, for example, in most preparative chemistry in which the pair is more likely to 
separate without reaction than to react. The inequality implies that: 
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Where Kd is the equilibrium constant for the diffusive step. Both k1 and Kd are temperature-
dependent but we have seen that the activation energy for diffusion is small and we can ignore 
changes in Kd at normal temperatures. This implies that the overall rate of the reaction depends 
on the rate constant for product formation, and through the temperature dependence of the rate 
constant k1 on its activation energy. 
 
(ii) The diffusion controlled reaction. Here the rate of break up of the encounter pair << the rate 
at which it reacts to form products, k-d << k1, implying that: 

d
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That is, the rate of the reaction is entirely controlled by the rate at which the reactants come 
together, with reaction occurring every time that this happens. This is the case provided that EA 
<< Ed; that is the activation energy for reaction does not have to be zero but rather less than the 
energy needed for the reactants to separate again. These reactions are obviously very much 
faster than those in the first category and are termed “fast reactions in solution”. Some examples: 
 

a) The combination of small free radicals (larger ones may have considerable activation 
energies as a result of steric hindrance etc). This can be very important in radical-initiated 

A + B (AB) P
k-d

kd k1 



 - 5 - 

These Notes are copyright Alex Moss 2003. They may be reproduced without need for permission. 
www.alchemyst.f2o.org 

polymerisation, for example, whilst many human illnesses are now known to involve free 
radicals. 

b) Reactions involving energy transfer, such as the quenching of the fluorescence of 
molecules. 

 
Diffusion Controlled Reactions 
 
Calculation of the rates of diffusion-controlled reactions – 
We need, as in the gas phase, to calculate the number of collisions the reactant molecules make 
with one another. Our basic model is similar to that we use in the gas phase: we initially consider 
a static molecule A which is immersed in a solvent which contains reactant B molecules, and we 
consider that when B ones come within a critical distance r (known as the “encounter distance”) 
of A they react. 
 
When the reactants diffuse together and react this disturbs their local concentration and 
establishes a concentration gradient: 
 
 
 
 
 
 
 
 
 
 
 
And we know from Fick’s First Law that this creates a flux of material (in mol s-1) through the 
solution which is given per unit area by: 

J = DB(dcB/dx) 
This implies a flux of NAJ molecules s-1, where NA is the Avogadro number. We now have to 
remember that B can approach A from any side; assuming spherical symmetry. 
 
Total flux of B towards A through a sphere of radius r = flux per unit area x the surface area of the 
sphere. 

dr
BdDNrJNrJ BAA

][44 22 ππ ==  

Where DB is the diffusion coefficient of the B molecules. 
Re-arranging we obtain: 
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We can now calculate the concentration of B at any distance r from A: 
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The integration limits come from the fact that when r tends to infinity, [B]r tends to [B], the bulk 
value. Note that J is independent of r. This may seem strange from the equation we wrote above, 
but look at the diagram – the same three molecules which pass through the sphere of radius r 
would also pass through a smaller one since none are lost to reaction before they reach the 
critical value r*. 
 
This gives: 

[B]r = [B] – J/4πDBNAr 

r* r 

[B]r 

With 
reaction

Without reaction 
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But now we introduce the fact that B reacts when it gets within a distance r* of A. It is then 
removed from the system so that [B]r* = 0. 
 
The flow of B towards A which leads to reaction is obtained by inserting this condition into the 
above equation and rearranging: 

J = 4πr*DBNA[B] molecules s-1. 
In the solution as a whole the concentration of A is [A] so that there are NA[A] molecules of A. The 
overall rate of collision between A and B molecules, which is equal to the rate of reaction for a 
diffusion-controlled reaction, is therefore: 

4πr*DBNA
2[A][B] molecules s-1 m-3. 

This is almost the correct answer but we should remember that the A molecules move, too (just 
as we have to in the calculation of the collision rate in gases). It turns out that we can simply 
replace DB by the sum of the diffusion coefficients of the different species: D = DA + DB and obtain 
the final result that: 

Rate = 4πr*DNA[A][B] 
Note the direct dependence on the diffusion coefficient. From the Stokes-Einstein equation we 
have; 
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And if we assume that A and B are roughly the same size and that reaction occurs when they 
actually touch, 
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In this approximation the rate constant is independent of the actual species involved in the 
reaction and, in particular, their size. 
 
There is a correction factor that is necessary to make this equation valid over a wider range of 
conditions. The rate is given instead by: 

f
RTkd

σ
η3

8000
=  

σ is a factor introduced for radical recombination reactions. It brings in the requirement that 
antiparallel spins are necessary for bond formation. Only one radical encounter in four satisfies 
this – in the other three (triplet) states the electron spins are parallel. Therefore we multiply by a 
spin factor of ¼ . 
 
f is a factor that comes into play particularly at higher viscosities, where the Stokes-Einstein 
relation begins to break down. This is because it was derived by treating the liquid as a bulk fluid 
whereas we are concerned with the diffusion of molecules. It turns out that this can be accounted 
for by introducing a “frictional constant” that has a different value for each solvent (and can be 
estimated from independent theory). 
 
Some Examples 
Besides the radical recombination and high viscosity cases, there are some other reactions that 
are worth mentioning. 
 
Quenching of electronically excited states: 
This is fluorescence quenching, e.g. Naphthalene + biacetyl. This type of reaction is always very 
efficient. Interpretation of the rate constant using the theory given above suggests that molecules 
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can exchange electronic energy when they get within 0.5-0.7nm of each other. That is they do not 
have to actually collide, and this tells us that there is a through-space mechanism by which they 
do it (electric dipole-electric dipole interaction). 
 
H+ + -OH equilibrium.  
This reaction is quite abnormally fast. It is diffusion controlled, but the diffusion coefficients of the 
two species are abnormally high. This is explained by the fact that diffusion in the normal sense 
of one molecule moving towards another is not needed. Rather the proton, for example, simply 
hops from one molecule of water to another (the Grotthus mechanism), and protons are small 
compared with molecules. This actually relies on the water having local structure, and in fact the 
proton moves faster in ice than in liquid water. It is worth noting that the molecule must rotate 
before the next state of hopping. The mean lifetime of an individual H3O+ molecule is thought to 
be about 10-12s. 
 
It is worth remember however that although the diffusion controlled rate constant may be very 
high, a diffusion controlled reaction may not be very fast if the concentrations of one of the 
reactants is low. 
 
Diffusion Controlled Reactions between ions 
We might expect ions to behave differently due to the electrostatic charge effects. This either 
tends to hold them together or separate them by repulsion. The size of this effect is expected to 
be linked to the magnitude of the interaction (U) compared to the thermal energy (kT), through a 
Boltzmann type of relation. In fact, it is found that a simple multiplying factor in the equation for 
the rate constant – 
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ZAZB are the charges on the two ions, e the electronic charge, ε0 the vacuum permittivity and ε the 
relative permittivity of the solution. 
 
kd is increased for ions of opposite charges, and decreased for ones of like charge. The effect is 
most pronounced in low relative permittivity (non-polar) solvents. 
 
Activation Controlled Reactions 
 
Basic scheme: 

A + B  AB  P 
When k1 << kd

-1 the reaction proceeds with the second order rate constant now defined as k2 
which is given by k2 = k1(kd/kd

-1) = k1KAB. The reaction rate constant is lower than that in the 
diffusion-controlled limit. 
 
Reactions between ions: 
We saw that ions affected diffusion controlled reactions by making the diffusion more or less 
difficult, depending on the charges of the ions. In activation controlled reactions this implies that 
the equilibrium constant KAB is affected. 
From thermodynamics we have KAB = exp[-∆G/kT], where we can write the Gibbs Free Energy 
change as the sum of the change in the absence of ions plus the electrostatic potential, U, 
between the ions: 

∆G = ∆G0 + U 
Where U is the same as it was above for diffusion controlled reactions. 
However, we know that k2 = k1KAB so: 
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Where the superscript zeros refer to values with no ions present. 
 
We see that if the product ZAZB > 0, k2 is decreased, but if ZAZB < 0 it is increased. This is what 
we would expect – like charges repel and make reaction more difficult, whilst unlike charges 
attract the reactants together. 
 
The same equation shows that the rate should vary with the solvent used, and in particular it 
should vary as 1/ε. This is pretty much what is found experimentally. 
 
Transition State Theory 
In TST it is assumed that reactants encounter to form an “activated complex” or “transition state” 
which is in equilibrium with the reactants but which may dissociate to form products. 

A + B  C#  P 
The activated complex is a molecular species en route to the product and should not be confused 
with the encounter pair we have been talking about. In the gas phase we can do the calculation in 
some detail using the partition functions of the species involved, but these are difficult to define in 
solution. We therefore move to the thermodynamic formulation of TST instead. 
 
Our approach is however exactly the same – we calculate the concentration of the activated 
complex which decays unimolecularly to the product. Then we have: 

][]][[][ #CkBAk
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obs ==  

Where we have assumed that experimentally we find the reaction to be second order. 
 
Having assumed that the reactants are in equilibrium with C# we obtain –  

]][[
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where KC is the equilibrium constant written in terms of concentrations. It follows that kobs = kKc. 
 
From thermodynamics we can relate the equilibrium constant with respect to pressure KP to the 
Gibbs Free Energy change through ∆G = - RT ln KP and to use this we must first convert the 
equilibrium constant in terms of concentration to that in terms of pressure: 
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It then follows that: 
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= , where ∆G# is the free energy of activation. 

We could use the general result from transition state theory that k = kBT/h if we wished. This is 
obtained by assuming that it is a specific bond in the activated complex that vibrates to 
destruction. It is equal to 6x1012s-1 at 300K. This gives us a feel for the size of the pre-exponential 
factor (and the maximum rate of reaction). 
 
Now writing ∆G# = ∆H# - T∆S# 
We obtain, 
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where ∆S# and ∆H# are the activation entropy and enthalpy, i.e. the changes which occur to both 
in forming the activated complex. 
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This equation nearly has the same form as the Arrhenius equation, but we need the relation 
between the enthalpy of activation and the energy of activation. It turns out that for a reaction in 
solution there is little difference between ∆H# and ∆U# and we find ∆H# = EA – RT. Substituting 
gives: 
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Note that we have an expression for the pre-exponential factor, A, and that it depends on the 
activation entropy of the reaction. 
 
The thermodynamic treatment of the Absolute Rate Theory is also valid in the gas phase. Here, if 
two molecules come together to form an activated state the entropy change is from a less-
ordered to a more ordered state and the change is negative. But if the reaction is in solution and 
involves oppositely-charged ions of the same charge, the entropy change is positive. This is 
because the ions are hydrated before they form the complex as a result of the charges attracting 
the dipoles of the water, but the complex itself is neutral and the ions are released from bondage 
– the entropy increases. 
 
The reverse occurs if a neutral molecule dissociates into ions, or if two ions of the same charge 
come together so that the total charge, and dipolar attraction, is increased. 
 
Summarising, if two ions react and have ZAZB < 0 then ∆S# > 0, but if ZAZB > 0 then ∆S# < 0. 
These are examples of ELECTROSTRICTION, which causes the number of attached solvent 
molecules, and the volume of the activated complex, to change over what it would be if the effect 
did not happen. 
 
It is worth noting that this can have an enormous effect – we normally associate the major effects 
on reaction rates with activation energies, but entropy term can dominate. 
 
A further unexpected consequence of this theory is that some reactions in solution are affected by 
the external pressure applied to them. This is because: 
∆G# = ∆U# +p∆V# - T∆S# and this can be substituted into our original equation. Differentiating with 
respect to p yields: 

RT
V
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That is, the rate constant changes with pressure if the reaction proceeds with a volume change, 
called the activation volume between reactants and the activated state. But in solution there are 
two contributions to this – the volume change on forming the encounter pair, and the change 
when the encounter pair becomes the activated complex. 

∆V# = ∆V1
# + ∆V2

# 
For bimolecular reactions, V1 dominates and when ions are concerned we are again affected by 
electrostriction – 
ZAZB > 0, then ∆V1

# < 0 : k2 increases as p increases. 
ZAZB < 0, then ∆V1

# > 0 : k2 decreases as p increases. 
 
Here the solvation of the ions reduces the volume occupied by the solvent molecules. 
 
For unimolecular reactions, there is no V1. 
 
If a neutral molecule dissociates to neutral products then ∆V2

# > 0 since the bond breaks and two 
molecules are produced in place of one. If the products are ions, then ∆V2

# < 0 by electrostriction. 
 
There is obvious correlation between the entropy and volume of activation as both are affected by 
electrostriction. 
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The Kinetic Salt Effect  
It is found experimentally that the rates of reactions involving ions are affected by the presence of 
other ions, not themselves involved in the reaction, in solution. This is known as the kinetic salt 
effect. It can be understood using a combination of absolute rate theory and the Debye-Huckel 
theory for ions in solution. 
 
Care must be taken not to use a salt that has an ion in common with the reacting species since 
then its presence would affect the ion equilibria (“common ion effect”). 
 
Debye-Huckel Theory tells us that for an ion, i: 

log10 γi = - A zi
2 I½ , 

where I is the ionic strength = ½ Σ cjzj
2 (sum over all ions present – reactants and added salt). 

 
We can combine this with our rate equation by taking logs and substituting for the activity (γ) 
terms. We also realise that the charge on the activated complex is the sum of the charges on the 
individual separate ions: 
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where A = 0.509 dm-3/2mol-1/2 for water at 298K. 
 
We predict, therefore, that the log of the rate constant should vary as I1/2 and that the slope of the 
line should be zAzB. This is born out experimentally and it provides an extremely useful method 
for identifying the species involved in a reaction through its charge. 
 
Mass Isotope Effects in Chemical Kinetics 
Replacement of one isotope of an element by another can cause substantial changes in the rates 
of reaction of some types of reaction, if the bond involving the isotope is that which is broken. 
This has proved invaluable in the understanding of the reaction mechanisms of complex organic 
and bioorganic processes, for instance enzyme reactions, and has the effect of making 2H2O 
poisonous to biological systems at sufficiently high concentration. There are three main effects, 
the kinetic isotope (and inverse) effects, the equilibrium isotope effect, and tunnelling. All have a 
quantum origina and all depend on the mass of the isotope. There are other effects which depend 
on the fact that some isotopes have magnetic moments, which affects reactions involving free 
radicals. 
 
Kinetic Isotope Effects 
The activation energy of a chemical reaction is determined by 
the energy separation of the reactants and the transition state. 
But the energies are quantised and, in particular, the reactants 
possess zero point energy. This differs between molecules of 
different isotopic content, causing the activation energy, and 
the rate of reaction, to change. 

 
The maximum possible size of this effect is obtained if it is assumed that isotopic substitution has 
no effect on the energy of the transition state. 
 
Define E0 to be the energy gap between the (unattainable) lowest point of the potential energy 
curve for the reactants and the transition state. The activation energy for breaking the C-H bond 
is then E0 – ½ hvCH, where vCH is the vibrational frequency of the C-H bond. Similar this can be 
done for the CD bond. Inserting this into the Arrhenius Equation gives: 
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Treating the vibration of the molecule as a simple harmonic oscillator, 

µπ
υ k

2
1

=  where k is the bond force-constant (the same for both isotopic molecules), and µ is 

the reduced mass. It follows that: 
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This has the value of (13/7)1/2 if we just consider the CH fragment, but in reality CH is not a 
diatomic molecule so that using C=12 in this equation underestimates the mass of the second 
component involved in the vibration. The rest of the molecule is in fact so heavy that we may 
regard the CH bond vibrating as though the H atom was alone moving. Inserting this above 
shows that the value of the ratio rapidly tends towards 21/2 as the molecule gets heavier. 
In consequence we can write in general that: 

)
2

11( −≈Λ CHυυ  

This gives limiting values of kH/kD ≈7 at 300K, and increases with decreasing temperature. 
 
We note also that hydrogen is unique in having an isotope twice as heavy as itself. Mass isotope 
effects are consequently much more pronounced for H and D than they are for other elements 
(e.g. 12C). 
 
The magnitude of the kinetic isotope effect is decreased if the transition states involving the two 
isotopes have different energies. This would be expected to be the case in H or D atom transfer 
reactions: 

 
Now the difference in activation energies is less than the difference in the zero-point energies – 
the kinetic isotope effect is diminished in size. 
 
Closely related to this is the Inverse Isotope Effect that is seen in the reaction of H and D atoms 
with the H2 molecule: 

H + H2  H2 + H 
D + H2  HD + H 

Here the zero point energy of the reactants is that of the H2 molecule in each case and the 
difference in activation energies originates only in the zero point energies of the transition state: 
the activation energy for the D reaction is now the lower. 
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Equilibrium Isotope Effects 
Isotopic substitution can affect the position of an equilibrium and through it the rate of a chemical 
reaction. This is commonly seen in protonation reactions where H+ adds to a molecule, S: 
H+ + S  SH+ with equilibrium constant K, followed by 
SH+  products, with rate constant k. 
The overall rate constant for formation of products is then kK. 
 
The size of the equilibrium constant is determined by the Gibbs Free Energy change in the 
process. Since H+ and S are not bound, this affected by isotope effects only by the zero point 
energy difference in the SH+ and SD+ species, and this implies that ∆G is greater for SH+, so that 
SH+ is more dissociated (it is the stronger acid). That is, KH < KD. Typically pKA(SD+) is about 
pKA(SH+) + 0.6 
 
Everything else being equal, this has the effect of making the overall reaction to form products 
slower in H2O than D2O. But this conclusion must be made with care – it assumes that kinetic 
isotope effects on the reaction stage do not affect this result, and it assumes that tunnelling can 
be neglected – quite often H+ transfer reactions are faster than D+ ones. We must always 
remember that more than one effect can occur. 
 
Quantum Mechanical Tunnelling 
A characteristic of most simple chemical reactions is that they satisfy the Arrhenius equation. 
That is if k is measured as a function of temperature then a plot of ln k versus 1/T is a straight line 
with slope –Ea/R. The physical interpretation is that the reaction proceeds by the system 
overcoming an activation barrier that separates the reactants from the products. It is, however, 
found experimentally that certain sorts of reactions, notable proton- and hydrogen atom-transfer 
ones, show non-linear Arrhenius behaviour at low temperatures where the reaction proceeds 
faster than would be expected from a measurement of the (temperature-independent) activation 
energy at higher temperatures. That is, the reactants cannot surmount the activation barrier fast 
enough to account for the observed rate of reaction. It is apparent that the reaction proceeds by a 
quite different mechanism, which is quantum mechanical tunnelling. 
 
Tunnelling actually proceeds at all temperatures, but it is only detectable when it becomes the 
dominant mechanism – at higher temperatures the reaction over the top of the barrier is much 
faster. 
 
As has been seen above, the reactants are confined by a finite potential barrier. This always 
means that Schrodinger Equation has a solution inside the barrier itself, that is, the wavefunction 
is non-zero within the barrier. Since the square of the wavefunction gives the probability of a 
particle being at a position, this implies that it can actually penetrate into the barrier, and if the 
barrier is sufficiently narrow, get right through to the other side. 
 
Solving for a simple potential step in one dimension gives two important consequences – only the 
lightest atoms tunnel, and different isotopes of them tunnel at appreciably different rates. We 
expect to see such effects in chemistry for reaction involving H and H+ and their isotopic forms. 
 
They show up in two ways, strong departure from Arrhenius behaviour at low temperatures, with 
the departures becoming apparent at substantially lower temperature for D and D+ than for H and 
H+, and abnormally and unexpectedly high ratios of kH to kD. 
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Electron Transfer Reactions 
The reactions in solution which involve the transfer of an electron from one species to another are 
of considerable importance. They are commonly encountered in inorganic reactions between ions 
exhibiting mixed valence but are prevalent too in organic chemistry and biochemistry. They occur, 
for example, in photosynthesis in which early on the chemistry following absorption of a photon, a 
pair of radical ions is formed which would back-react and re-evolve the energy trapped from the 
sun if the positive and negative centres remained contiguous in the photosynthetic centre. Nature 
copes with this by providing an efficient and fast electron transport chain which whisks the 
electron away and separates the charges. Electron transfer also plays an important role in human 
respiration and other biological processes. 
 
In inorganic chemistry, electron transfer reactions are of two different types. In one (the inner 
sphere mechanism) an actual bond is formed and broken, with the reactants sharing an atom or 
ligand in their coordination shells. 
 
In the other (the outer sphere mechanism) no such bond is formed and the electron simply 
transfers from one species to the other, although through a complicated route. 
 
An important sub-set is the “degenerate electron exchange” reaction between a radical anion and 
its parent molecule. This type of reaction has reactants and products that are the same, and it 
can be detected only using magnetic resonance methods (both ESR and NMR) where its 
occurrence strongly affects observations. This type of reaction is also important in biology. 
 
We are primarily concerned with outer sphere reactions. 
 
All of these reactions are concerned with ions and they are consequently strongly affected by 
their environment which plays a very real role in the reactions and can no longer be regarded as 
a passive medium. Sometimes the entire ion atmosphere surrounding a given molecule must 
change. Energy expended to accomplish these changes is known as “reorganisation energy”. 
 
From a fundamental point of view the reactions also show special characteristics as a result of 
the electron being so light compared with the nuclei present. When an electron jumps from one 
molecule to another it does it so fast that the geometry of the molecules involved do not change 
during the transition, and nor do the positions of the dipoles. There is a direct analogy with the 
Franck-Condon Principle in spectroscopy in which an electron jumps from one orbital to another 
without the molecular framework changing. 
 
Marcus Theory 
Marcus envisaged the two reactants coming together to form an encounter complex in equilibrium 
with the reactants, which then formed a transition state which subsequently dissociated to form a 
second encounter complex, itself in equilibrium with the products. For example, for the reaction: 
 

Fe(H2O)6
2+ + Fe(H2O)6

3+  Fe(H2O)6
3+ + Fe(H2O)6

2+ 
 
This can be depicted as follows – we draw the ions with charge 2 as bigger spheres than those 
with charge 3. This diagram also shows that in the transition state the reactants and products 
have attained the same size: 
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The reason for this is more clearly seen on a potential energy diagram. This is a little difficult to 
know how to draw since we have to depict the reaction in two dimensions on paper – as usual we 
label one axis the reaction coordinate, implying that this is the only coordinate which changes 
during the reaction. 
 
Since, however, the ordering of the solvent (and therefore the entropy) enters the problem, the 
surface we should draw is a free energy one rather than simple potential energy one. We shall 
assume that the reactant and product curves are identical, and both parabolas (i.e. that the 
reactants and products are behaving are behaving as simple harmonic oscillators with identical 
force constants etc). For reaction to occur there must exist a route from the reactant state to the 
product one – both energy surfaces must pass through a common point on the reaction 
coordinate axis. We treat them as weakly interacting so that they can be drawn crossing one 
another, and the activation free energy is represented by the barrier the reactant must surmount 
between them. 

 
Here the reactants are shown as the donor/acceptor (DA) encounter complex, and the products 
the D+A- encounter complex. ∆G# and ∆G0 are the free energy of activation and the standard free 
energy change in the reaction respectively. λ is the new quantity, the reorganisation energy. 
 
Inspection of the diagram shows that λ is the energy that the product would have to obtain to be 
formed if the electron was unable to find a lower energy route. In fact the free energy surfaces of 
the reactant and product intersect, and the transition state itself exists between them – the 
reactant seeks out this low energy path and goes over it to form the product. λ is consequently 
interpreted as the free energy required to distort the equilibrium nuclear framework of the 
products to that of the reactants without electron transfer in fact occurring. In practice this 
includes all the reorganisations mentioned above – the bond lengths, the dipole orientations and 
the changes in the ion atmosphere. 
 
By writing in the mathematical equations for the parabolas the calculation of the free energy of 
activation becomes a simple problem in geometry which yields: 

λ
λ

4
)( 20

# +∆
=∆

GG  

As ever in transition state theory the observed rate constant can be expressed as the product of 
an equilibrium constant K (here for the formation of the reactant encounter pair) with the rate 
constant for the transition state reacting to form products (which we label kET): 

RT
G

ETobs KAeKkk
#∆−

==  
where A is a pre-exponential factor (but recall that entropy is included in the free energy). 
 
For degenerate electron transfers (self-exchange reactions) such as: 

Fe3+ + Fe2+  Fe2+ + Fe3+ 
∆G0 is obviously zero, and ∆G# = λ/4. 
 
In cross reactions (A + D  A- + D+), the reorganisation energy is equal to the mean value of 
those of the two corresponding self-exchange reactions, whilst ∆G0 can be measured from 
electrochemistry – the rates of these reactions can therefore be calculated from data obtained 
from the study of the self-exchange processes. 
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The approach we have given contains the principles of the Marcus Theory but is approximate. 
The value of the activation free energy should be amended to account for the work done in 
moving the reactants to the transition state. Also the free energy change in the reaction should 
include the work done in forming the initial reactant encounter pair, and in separating the final 
product encounter pair. But within these limitations further progress can now be obtained by 
introducing quantum theoretical aspects which we have so far ignored. 
 
The rate of the electron transfer step depends on the mixing of the reactant and product 
wavefunctions at the transition state. The physical interpretation is that this occurs most efficiently 
if the vibrational wavefunctions of the two states overlap in that region of space. This is exactly 
analogous to the familiar calculation of the intensities of lines in the electronic spectra of 
molecules. Treating it as a simple two-level system gives: 

VR
2 = V0

2 e-βR 
Where R is the edge-to-edge distance between donor and acceptor treated as spheres, β is a 
constant and VR is the rate of electron transfer at a distance R. 
 
This insight allows us to investigate how the variation of λ relative to ∆G0 affects the rate of 
transfer: we find that overlap of the wavefunctions maximises, as does the rate, when λ = -∆G0 
(not surprisingly this corresponds in the classical treatment). 


