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STATISTICAL MECHANICS NOTES

Boltzmann Factor f(T) is a function of energy only, while f(T) is a
Physical it fe (E) function of temperature only. The constant
ysical quantity oc exp[- const x . (T) ] makes the expression dimensionless (E/T)

Boltzmann Law:

n, e—(gi—gJ)/kT

Distinct, Independent Particles —
Distinct = can tell which is which (labels) a,b,c...
Independent = minimal interaction (can exchange energy in collision).

Hence, E=g?+ &’ + %+ ... = Zg'
i

Configurations —
Sharing energy amongst particles from a manifold of energy states, ¢, €1, €5 ... etc (gg = 0).
At any instant, there are:
e n, particles with .
e n, particles with ¢4, etc.
This is the configuration. (Same Total Energy).

Statistical Weights —
Number of ways of reaching a given configuration, Q. Represents the probability that the
configuration can be reached.
a-_ N where x! = x(x-1)(x-2)(x-3)...3,2,1 and 0! = 1.
n!n.!n,t...
Equal Probability of Configurations —
No bias to any configuration. This is the Principle of equal a priori probabilities.

Conservation of Number and Energy —

N=Zni & E=>&n

Predominant Configuration —

Configuration with the largest statistical weight.

For very large number of configurations, the average peak of the distribution completely
dominates so that everything else is negligible.

Maximisation Subject to Constraints —
Find maximum in distribution (Q) subject to constraints of Conservation.
Predominant configuration amongst N particles is found to have energy states populated as:

n . )
—Lea , where a and B are constants under fixed temperature.

Identify o

nﬁo =g“ & =0, no = 0 — Ground State

n : e
Do _gagsn J Mo _ ook
N N
LI
nO
This is the T dependent ratio.
B= Yer [ can be proven, see later ]
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Molecular Partition Function
Derived from Boltzmann Law.

_ -
n,=ne""
Eliminate n, (generally not known):
N=n,+n;+n,+..= ZHi
all states
Hence,
- ~ Be
M = AP N2 6&\+ ﬁoﬁ z+“ = ﬁ“zg- (3(\
k3 2y
Froc Was, Ne—Bes
N = ‘—59__"
<
A a

a =3 Tz lre T (e pn)
5+

Shows how particles distribute (partition) over accessible quantum states.

Infinite series that converges more rapidly for increasing ¢ and increasing p.
e Can be evaluated as soon as ,>> 0, so that efe> 0.

o Ifgy>>kT,qg> 1.

o For successive energy gap Ag, q >> 1 if Ae <KkT.

Degeneracy —
~Be-
o~ % are

3= st s\mm'.\-.,S
U—uds

SeMnR enqg: 3
CU\SU‘;)*) 'Le_\\e)»s
notes: A = ZOUT 2 980 = Meq,

SWL_ (axls

L N
Measure extent of particles escaping ground state.

T=0K,qg=1(n,=L).
Increasing T, q > « (fewer particles in Ground State; infinite number of accessible states).

Applications —

Total Energy, E = nigq+ nygx + ... = Zniei

states

From q:
L= % e P £ N P Ae.
== T -~ NZEle
Ze'fsiL Ze B é.e»ﬁﬁg’
Note that:
9 o Re ~ e
dr\s(e' ) "“aie -
Thus,
E--Nda (dk"%)
Q. 3 4B
Internal Energy —
U=U(0)+E
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0(0) - N6’Inq

op
Also, q depends on V (which depends on T) so must specify constant volume:
a \n 9
C= o=~ (55 = oerener?( J—?%)V

This can be combined with the only temperature-dependent term in q for translational energy (see
later):

Ing="51n B
Such that:
Lr\ 3

This can be compared to N atoms in a perfect gas:
U = U(0) + */,NKT
And hence we see that = Yt [ as used earlier ]

Entropy —
S=klnQ.

U=U(0)+E=U(0)+ Y e,
states
V=2 nide. + Seidng

(”\_Lq,\—— wcrk
At constant V (as for internal energy) the spacing of successive energy states does not change

on heating. Thus, dg; =0,
du= Y gdn,

states

From here, dU = dq,, = T dS [ classical thermodynamics ]
a8 = = &> Peaidn;
Condition for max Q (predominant configuratlon).
e Q.

L
ki(dm )Jn ‘Ekogzc}ﬁ,

Number of particles is constant: Zdni =0

states

Therefore,
dS =k d(In Q)
S=kIn Q.
Molecule = Mole (Canonical Partition Function)
ad e =4 Sl
B~ = M) = <o =5 =N TN

_ ) Lr\

Molar B, S0t B=-1( SR N

Reasonable when assuming non-interacting, and does not apply to other properties, e.g. S.

Allow possibility of interactions by invoking the idea that every system has a set of system energy
states which molecules can populate.

Canonical Partition Function, Qy_: Canonical — according to a rule.
., = Ze-(&a; Applies to states of constant amount,
™ T volume and temperature
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Hence,
I @y
£, = <Ei>»=~ Y >v
Compare to:
E= —N@%&\f)v

Scalin -Fnc_\‘cf implied . Notse

1N @u N pasticks  alvesdsy

Q»mid.ureel)
Can continue to develop a statistical toolkit of functions, e.g. Entropy:

38 CuF

AV ~ u)) i Ju\o
<y = (“— )v - xl(k T ) ]
= 1 T
TS, (258,

A\nQ)v 3

Third Law = S, = 0, on integrating:
O =)
= = ¢ T + kln ©
Compare Yo A= —TS
A - A2 G-V )-TR

(e -veY) (A~ —A)
S = hy - -
. .

A-AW) = —wT g

Massieu Function
= - A/T
This gives:
_(AAeY) C
3= - — ke Mgg;u;)

Links Statistical and Classical Thermodynamics.
AT AAMD
- (528)

0= ICrT)
\UCD’B k’Yi( AK.(\Q)V CQS S‘\cuor\
Mo = a ka — J an
-~ %
Ga Bra /1’) C

Also, Pressure:

= -RK), = p= T (),

Heat Capacity,

a0
ay= v /iv
{rr l(awﬂ)\ll’ 2‘;\,(‘)({\0 T
Entropy:
: oA BN
S:":Fr)\i = k\n@“'k’“( Q)
-~ &
T vk LA D
Enthalpy:
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H=0vey
{ ) DA
H=T(M )v'-"Z)T})'r

=2 A -Hlo) = kkT? (J%Q )+ kT\/(a%Q)F

Ho) = JC0) = A(o)E‘ QCD)—A

P\l*l’\\»('\'" = (?U{'ﬁd’a"vg =
H-dce) = et (P53« kT

Gibbs Free Energy:
G=A+pV

G:A_v(%j
oV )

G- Geo) = —wr (@ w ey (B9,

Perfect Gas =
G-G(0) =-kTIn Q + nkT.

Chemical Potential:
. o AA ~ _(,gxf—fsa-v*ﬂd d A
~T 3 =4 melas:

AV /J -N (al,J]u,.
= Rt MMQ)
Independent Systems:
%
& T\r —  Thd- T INDIETHRCOISHRR™ (&
— Ve« DSTINGUSWUA E LT

Use Stirling’s Approximation:
INN!'=NInN-N

e.g.
—kT In Q =-NKT In g + NKT In N — NkT

Thus,

G — G(0) = -NKT In (g/N) [ For INDISTINGUISHABLE ]

G-G(0)=-NkTInqg [ For DISTINGUISHABLE ]

Translational Partition Function, gys

Consider particle in a box:

n ’h?
&, = 5
8ml,
Sum over all accessible states:
— Bt R Kl
Avs, o gc =

But practically all energy levels densely packed, so becomes an integral:
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___5“—/&;&/&@; g
C\HS,JL 5 = N
-~ Q'trm e La

c\;’é’s,z - >

s e = (% )/LL T2 (. Gdseded)
s (Zr\nf\flz\l -nm\,( ) \/

L
o~ R = ST

“‘) Crar) =\

Canonically,

Collecting constants,

Hes

Thermodynamic Functions for an Ideal Monatomic Gas

.
Lo @, = TN WE)* TN TN S SELUSIRE
vari{alley
———

Thus, derivatives simple:

o La Q}H\) ol Q’ffs) -3
= T otz /gy 27>

2 le Qﬁ—;) - ™~
DNV T

AV
These can then be used in the functions found earlier. Hence,
B =? 2 = NWT

NwT c

o= N o

Sy C\l)m z = 3K
2
Entropy more complex, since In Qs appears. It proceeds as:

S =k La Quy rer (T030s)

- Vo~
k Lr\ va; - k kﬁ -(:1__‘%

=W CL"‘ ,:‘ﬂ 'Q‘ (n C\/N v‘k(N'&nc\,—\n N\:)
Use Stirling’s Approximation: In N!'=NIn N - N

ko h Qepg = %R e o= Nlo N N)
= N (L~ \.DlN)

Thus,
= N (lr ) e 3 N

= . s
S Nw (B =+ N %1 )
Overall,

s £ 28|

One mole of Ideal Gas =
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RT

N LK ER Lm‘Mgf\/'P

yee ABLES C,mNTS

qiNes N s A
] o (@]

This is the Sackur-Tetrode Equation. The constants add up to 172.29 J K" mol” [20.723R ]

v , ,
7 D lapt = laN R -AaT

T ST R AWANT TR ANTHER U M 4+ canshant

(513 605R)
Note that:
N
AS KL-\ 7
" ipraiY)
clens
AS, - iR u\— =gl )T )

(fa(i NN Qﬁ:n&ha'\')"ﬂo’r‘ L NN

Slassioc 3

Ideal Diatomic Gas — Rotational Partition Function.

For a rigid rotor:
2L

ET = TQS*'\)ELI =h CBS(S‘\-\) I=/t:r’k
BT —m eI
k?_
heg
k

Lo \T(3‘+\)}\@r v@ ‘zﬁk =

0r may equal B/k
(depends on

kﬁ?mﬁ B == (T units)

—TCoR) O /_’;

Aot ~ g TES TS (The e

If I is not too small and T not too low, then appreciable number of rotational states are occupied,
and there is a virtual continuum as for qys:

S J Cz>+1) e"rcw“)e"/‘rc;{j'

o - . 8nInT
T]'“S 5\\1:25 C\,“c+ - g.—': - _r{——
Problems tend to arise when T is nearly OK and the molecule contains Hydrogen.

This expression otherwise works for all heteronuclear diatomics. Special considerations required
for homonuclear diatomics. This is due to over-counting of rotational states by a factor of 2. This
is because 180° rotation of X-X gives a result indistinguishable from 360°.
There q,0/2 required for all linear symmetric molecules.
Or,
Orot = T/o6,
Where:
o = symmetry factor (= 2 for homonuclear diatomic, = 1 for heteronuclear diatomic).
c = 2 for H,O and ¢ = 3 for NH3, for example.

Quantum Mechanically,

Interchange of identical nuclei may leave y unchanged, i.e. symmetric, or vy 2> -y =
antisymmetric.

Symmetric = boson (integral), while antisymmetric = fermion (half-integral).
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Viot =Wirs-Wrot-Wvib-Wel-Wns
Yns = nuclear spin wavefunction. Symmetric or antisymmetric depending on whether 2 nuclear
spin states are parallel / antiparallel.
Yot = antisymmetric or symmetric. For even J it is symmetric, for odd J it is antisymmetric.
Ye = antisymmetric or symmetric. Homonuclear diatomic is usually 1Eg+ = symmetric. Only O, is
common exception, °Z4 is antisymmetric.
Wirs = only motion of centre of mass, so no effect on symmetry (symmetric).
Wib = only depends on internuclear distance (symmetric).

Thus, in hydrogen | = %2 and the nucleus is a fermion so the y is antisymmetric.
This requires odd J to give symmetric nuclear spin and even J to give antisymmetryic.

In Deuterium, 1 = 1 (boson) = v, is symmetric. Thus,
Odd J = paired nuclear spin.
Even J =» parallel nuclear spin.

Thermodynamic Functions with Qo

BTN
b Qe ® N T N (-ﬂ( s

PRV~ SN
= )\, = NWTT Ca—r:—f)

=N W (A <‘°~“‘°~u’g\.)
Applies to all linear molecules with only two degrees of freedom in rotation.

Molar = Urot = RT, Crot,m =R.

B M \/\’\‘""(

For entropy,

; —_ D\ i T s
S L =T (TS ) Tk b o k@

=
L LAY&“‘I”JM

< o
Bwz
S Nxbis n = QT’-&")]
depecdance on O,
Extending to polyatomic, non-linear molecules — must consider 3 independent motions of inertia:

= EEEYE

Ortho and Para Spin States
In general, for homonuclear diatomic with nuclear spin |, each nucleus have p (=2I+1) spin states,
and a total of p2 nuclear spin wavefunctions to include in .

Of these p?,
Y2 p(p+1) = symmetric [ORTHO]
Y2 p(p-1) = antisymmetric [ PARA]

This is true whether they are bosons or fermions.

Proton, | = %2, yit = antisymmetric.

2 spin states, 1 or |, therefore 4 yns (p%)
Thus,

3 ortho (symmetric)

1 para (antisymmetric)

ODD J [ o-Hydrogen ]
EVEN J [ p-Hydrogen ]

Deuteron, | = 1, yi,t = symmetric.
3 spin states per nucleus, so 9 per molecule (p2)
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6 x ortho (symmetric)
3 x para (antisymmetric)

= EVEN J [ o-Deuterium ]

= OoDD J [ p-Deuterium ]

Therefore ortho-Hydrogen = Odd J, 3:1 ratio with odd predominating (due to statistical weight).
Similarly, ortho-Deuterium =» Even J, 6:3 ratio with even predominating.

Ratios apply to e.g. rotational Raman Spectrum.

At high temperatures, hydrogen exists in an equilibrium mixture of spin states favouring o-
Hydrogen by 3:1.

At low temperatures, there is an increased tendency for J = 0. Even = switch to p-Hydrogen.
This conversion is slow.

Normal Hydrogen (n-H,) = 3:1 mixture.

Nuclei with zero spin —
Some nuclei are 1=0 (e.g. °0).
8 protons and 8 neutrons occupy their own energy manifolds (closed shell configurations — all
spins paired). Also true for '*C.
p=2l+1=>»0,o0r CO, have only 1 spin state.
| = 0 = integral, therefore boson, so vy, = symmetric.
Hence,
CO, = only even J.
O, = only odd J.
Reason now is that ground electronic state is 329' (i.e. antisymmetric), therefore rotation must also
be antisymmetric (odd), unlike CO..

Vibrations in an Ideal Diatomic, Qvip

Orders of magnitude: qvip > Qrot > Qus are usually in the ratio 1:10:250-300 orders of magnitude.
Thus, cannot use the continuum approximation for qyp.
Qvib @ 300K = 1.

Simple Harmonic —
ol \
V- = 1% & zoe= 0w
Always non-degenerate in diatomics. Not so for polyatomics — linear = (3N-5) normal vibrational

modes, while non-linear = (3N-6).
& =0, g1 = hv, &, = 2hv, etc, due to reference against ground state of “zhv. Thus,

- pein —Bn e—?-&«u*e—s,e\nv{_'“

0\,0:\9 = ZQ_ = \+€,
This gives a geometric series:
\ R N < S
il = | - ¢ By o \_.e—eu.'.u,/T QL K
This is true for diatomics only. For polyatomics, just consider each normal mode of vibration
separately.

Vit;rational Energy spacings are much larger than Rotational, therefore 6, = 102%-10°, Ot = 10'-
10°.

Polyatomics —

ot = 1 , (G — W (¢S] 3
Anits (‘\,NJb) T ik X‘L\mg Al TOVARART
C,.02),¢3) 0. = sorme modos 12,3 .o

Independent and factorisable, therefore ignore anharmonicity (except at high T).

High Temperature Limit —
At high T, linear in q,;, against T.
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Expand 1—e %'T .

{ T
K =z ki b
At =@, - Ol ¢ Sh T D
=

LYRN /Im‘x\&

T7e

Thermodynamic Functions —
Mk@ \,

OO0 = VT C )

Note: far less simple than Uys and U, .

At high T: Uyiym = RT  (for each normal mode)

3000R _R
At 300 K: Uvib,m = —
€°-1) 1) 7

Also note that if g is set to Yzhv instead, then must add this to the result.

Heat Capacity —

EYe) - )L oL/ EINSTE 1
Colbm = 3T N =R( (ee\l\bf’r__l)'z_ EQUATION

Ty = R (Z) Jf e

(Ersteis fonchrin T

Entropy —
) Oelom0dl®)  Al-Ad®) Ot )
&\“\ = “‘V ’¢?= "—_——‘_l Yl = Qi

la Qi = Lklnq =R e vy

Su\’\o) -~ Qi/T

’9\’\\3/17
R @ SN/ \ )

,—Lf\(]-.e

Electronic Partition Function

o = E,%ﬂ o B t/RY :%ce‘c’*o Chrﬁﬁaﬁems) =Je
Ground States are commonly degeAnerate (not O, though, g; = 1).

For Atoms, use “**T; and g, = 2J+1.
For molecules, use “**'I" and g, = 25+1.

Excited States can be approached in a similar manner.

Usually, the energy gap from ground state to 1% excited state is large and the above applies. If
the gap is not negligible compared to kT (i.e. 6¢/T << 1) then:

S /T
A ey T 3° +“3¢Q

(Higher states than the 1% are rarely occupied).
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