
 - 1 - 

These Notes are copyright Alex Moss 2003. They may be reproduced without need for permission. 
www.alchemyst.f2o.org 

QUANTUM MECHANICS NOTES 
 

The Basics of Quantum Mechanics 
 
Schrödinger 

 
The Born Interpretation 
ψ at a point x, has a probability for a particle being between x and x+dx proportional to |ψ|2dx. 
Therefore, 

∫ = 1*2 τψψ dN  

Ωψ = ωψ 
Ω = eigenvalue and ψ = eigenfunction. 
When not an eigenfunction, must be a superposition or more than one wave function.  
 
Particle in a Box 

 
Tunnelling – possibility of finding particle outside box classically forbidden.  
 
Vibrational Motion 
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Rotational Motion 

 
Spectroscopy 

 
Hydrogenics  

 
 

Spin Orbit Coupling 
Electron has spin angular momentum, and this generates a magnetic field.  
Spin + orbit interactions – j = l ± ½  
Multiplicity = 2S + 1 
 

Postulates of Quantum Mechanics 
 
1a: the state of a system of N particles is fully described by a function ψ(r1, r2, … rN; t) – the 
wavefunction. 
 
NOTES:  
Spin omitted (for now). 
 
1b: Born’s Probabilistic Interpretation. 
The probability that a system in a state ψ will be found in the volume element dτ = dr1, dr2 .. drN is 
ψ*(r1 … rN, t) ψ(r1 … rN, t) dτ. 
 
NOTES: 
Statistical, even for 1 particle. 
P(x,t) = | ψ(x,t) | 2 is the probability density. 
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Can deduce from here: 
 
Normalisation – 

∫ =

space
all

N dtrr 1|),...(| 2
1 τψ  

Conserves probability. 
 
Physically acceptable ψ: 

• Single valued. 
• Continuous. 
• Finite. 

 
Dirac’s Bra-c-ket Notation – 

 
2a: in quantum mechanics, observables are represented mathematically by operators: 
corresponding to every classical observable A there is a corresponding operator Â which is linear 
and hermitian.  
NOTES: e.g. x, px, E, etc. 
 
3: Measurement. When a system is in a state described by ψ: 

i) single measurement of an observable A always yields a single result – an eigenvalue 
an of Â. 

ii) Mean value of A equals the expectation value <Â> 
 
Define Expectation Value: 

∫∫
∫ ≡>=< τψψ

τψψ

τψψ
dÂ*

d*

dÂ*
Â   [ if ψ is normalised ] 

Bra-c-ket: 
<Â> = <ψ|Â|ψ> if <ψ|ψ> = 1. 

NOTES: 
From (i) – Probability Distribution: 

 
Common Sense, as mean A = sum over all n of 
Pnan. 
 
From (ii) – must expand ψ in terms of eigenfunctions of Â. 
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i.e. Pn = | cn | 2 
 
Probability Pn that particular value an is measures is |cn|2, where cn is the coefficient of 
eigenfunction fn of Â (in the expansion). 
 
Dispersion in distribution of measurements is characterised by: 
Root mean square deviation (RMS) ∆A = 
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(∆A)2 = < (Â - <Â>)2> = < (Â2 - 2Â <Â> + <Â>2 ) > 
(∆A)2 = <Â2> - <Â>2 

Special Case – 
ψ is an eigenfunction of Â, so Âψ = aψ. < Â > is: 

< Â > = ∫ ∫ == εε τψψτψψ ad*a dÂ*  

Pn = 1 or 0 (n=ε or n≠ε), then dispersion free – single measure value, aε. < Â > = aε, < Â2 > = aε
2, 

∆A = 0. 
Thus, if ψ is an eigenfunction of Â then observable A will always yield the same result. 
 
2b: Choice of Operators. 
 

OBSERVABLE OPERATOR 
Position, x x̂  

Linear momentum, px 
x

hipx ∂
∂

−=ˆ  

Total Energy, E 
t

hiE
∂
∂

=ˆ  

 
All linear and hermitian. 
 
Linearity – 

 
Hermiticity – 
Â is Hermitian if:  < m | Â | n > = < n | Â | m >* 
EXAMPLES: 
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The eigenvalues of Hermitian Operators are real: 

 
Orthonormality – 

 
The eigenfunctions for different eigenvalues of Hermitian Operators are orthogonal, i.e. if Â | fn > 
= an | fn > and Â | fm > = am | fm >, where am ≠ an, then < fm | fn > = 0. 

 
Time Dependence and Stationary States 
Classical Observable  Quantum Operator. 
e.g. Kinetic Energy, 

T = ½ m (px
2 + py

2 + pz
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Potential Energy,  
V = V(x,y,z), so )ˆ,ˆ,ˆ(ˆ zyxVV =  

Total Energy = T + V,  H(x,px)  [ Hamilton’s Function ] 
Also note that the total energy operator from P2b is 

t
hiE

∂
∂

=ˆ . 

),(),( tr
t

hitrH ii ψψ
∂
∂

=  - Time Dependent Schrodinger Equation, TDSE. 

H is independent of time (in conservative systems), so always separable solutions to the TDSE of 
the form: 
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A system in a state described by this is said to be in a stationary state. 
 
Its energy is a precise quantity (P3) and no measurable property of the system changes with time, 
i.e. <A>(t) = <A>(0) where <A>(t) is the expectation value of operator A at time t. 
Proof: 

 
NOTES: 
This resolves the “radiation paradox” of old Quantum Mechanics. Stationary State  still not 
solved the TDSE. Need φn from TISE.  
 
A common relation that is useful is: 

 
To use this, it is necessary to understand what a commutator is. 
 

Commutators, Complementary Observables, 
and the Heisenberg Uncertainty Principle 

 
ABf ≠ BAf in general, where A and B are operators. 
 
Define: 
Commutator [A,B] of A & B: 

[A,B] = AB – BA 
Compared the effects on a ghost function, e.g. 
[x, px] f = (xpx – pxx) f   = -ih (x(d/dx) – (d/dx)x) f = -ih (x(df/dx) – (d/dx)(xf)) = ihf 
Therefore [x,px] = ih. 
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If [A,B] = 0, they are said to commute. For example, [y,px] = 0 (independent x,y). 
 
NOTES: 

• [B,A] = - [A,B] 
• [A,αB] = α[A,B] 
• [A,B+C] = [A,B] + [A,C] 
• [A,BC] = [A,B]C + B[A,C] 

 
Uses: 
From P3, Aψ = aψ and Bψ = bψ. This implies precise measurement of A and B, therefore [A,B] = 
0  precise value for each observable can be known simultaneously. 
If [A,B] = 0, then there is an eigenfunction of A which is simultaneously an eigenfunction of B. 
 
If [A,B] ≠ 0, it is NOT generally possible to measure the observables precisely and 
simultaneously.  
 
These observables are said to be complementary or conjugate. 

 
Heisenberg’s Uncertainty Principle: 

∆A∆B ≥ ½ | <[A,B] > | 
Where, 
(∆A)2 = <Â2> - <Â>2 
e.g. [x,px] = ih,  < [x,px] > = ih, so | < [x,px] > | = h 
Hence, ∆x∆px ≥ h/2 

Applications of Quantum Mechanics 
 
1 D free particle (no Potential) 

 
Note that general solution to (1) is a linear combination: 

 



 - 8 - 

These Notes are copyright Alex Moss 2003. They may be reproduced without need for permission. 
www.alchemyst.f2o.org 

General interpretation using P3 is that there is always dispersion-free energy for the above, but 
the relative probability of finding the particle moving in a given direction with momentum ±hk is 
|A’|2|B’|2 
 
General Solution to the Schrödinger Equation from the above (2) & (3): 

 
Compare to classical standing waves, 

cos (2πx/λ) + sin (2πx/λ) 
Therefore 2π/λ = p/h ,  λ = h/p  [ De Broglie Relation ] 
 
Quantisation – Particle in a Box 

 
Outside the Box: φ(x) = 0 – no particle here. 
Inside the Box: V(x) = 0 so TISE same as free particle above. Solution as above is: 

φ(x) = A cos (px/h) + B sin (px/h) 
ψ(x) is continuous, therefore Boundary Condition: φ(0) = 0 = φ(L). 
Hence, 
φ(0) = 0  A = 0. 
φ(L) = 0  B sin (pL/h) = 0. 
Thus, 
pL/h = nπ, where n = 1,2,3… 
Also, p = √(2mE): 

En = 2

22

8mL
hn

, n = 1,2,3… 

Quantisation arose from the Boundary Condition. Quantum number n is established. 
H φn(x) = En φn(x). 

φn(x) = B sin (nπx/L) for 0 ≤ x ≤ L 
φn(x) = 0 for x ≤ L, or x ≥ L 

B, such that φn(x) is normalised, is found by: 

L
B

dxx
L

n

2

1|)(|
0

2

=∴

=∫ φ
 

Pictorially,  

 
Probability Density | φn(x) | 2  tends to classical limit (Correspondence Principle) 
 
Energy Level Separation: 

∆E = En+1 – En = 2

2

8
)12(

mL
hn +

 



 - 9 - 

These Notes are copyright Alex Moss 2003. They may be reproduced without need for permission. 
www.alchemyst.f2o.org 

So, ∆E  0 as L  ∞ 
 
Extra Dimensions: 

d = 2, En = ][
8 2

2
2

2

2
1

2

Ly
n

Lx
n

m
h

+  

Lx = Ly  square box. n1 = n2 is single degenerate, while n1 ≠ n2 is doubly degenerate. 
Degeneracy is a consequence of symmetry. 
 
Harmonic Oscillator 

 
Classically, E = T + V = px

2/2µ + ½ kx2 
Quantum Mechanics: 

E = 2
2

22

2
1

2
kx

x
h

+
∂
∂−

µ
 

 
Satisfied for all x if both: 

 
Normalise, 

 
For remaining solutions try: 

2/2

)()( x
nn exPx αψ −=  
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Pn(x) = polynomial in x. 
 
Gives second order differential equations for Pn(x) when subbed into the Schrodinger Equation. 
The solutions are called Hermite Polynomials. 
Pn(x) = Hn ( α x) 
Eigenvalues En = (n+½)hω , n = 0,1,2… 
 
Ho ( α x) = 1   [ even in x ] 
H1 ( α x) = 2 α x  [ odd in x ] 
H2 ( α x) = 4αx2 – 2  [ even in x ] 
… etc. 
 
Hence, 

 
Particle on a Ring 
To get H: 
Transform to polar cords. 
Fix r, look at angular component of H. 
Transforming to polar coordinates: 

 

Fixing r means that 2

2

r∂
∂

& 
rr ∂

∂1
can be dropped. ψ = ψ(φ): dψ/dr = 0 = d2ψ/dr2. 

Thus, 

 
Therefore eigenfunctions of H can be chosen to be eigenfunctions of Lz. 
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Then, 

 

Therefore normalised eigenfunctions of H = 2

2
1

zL
I

which satisfy the boundary condition are: 

 

NB: Em = 
I
hm

2

22

is doubly degenerate for | m | > 0. 

 
Particle on a Sphere 
Transform to polar cords. 
Consider angular parts. 
Separate θ/φ dependence. 

 
2

2
1

zL
I

 

 
Separating variables, 
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Ordinary Differential Equation for (H)(θ), the Legendre Equation. 
 
Solutions are associated Legendre functions, 

 
i.e. m = -l, -(l-1), … 0, … (l-1), l. 
 
This gives the spherical harmonics: 

 
Which satisfy: 

 
Molecular Rotation 
Equivalent to free motion of particle with reduced mass on surface of a 
sphere (radius re). 
 

Therefore H = 2

2
1 J
I

 [ J not L – convention for molecular systems ] 
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i.e. EJ = Bhc J(J+1)  [ rotational energy levels ] 
B = h/(8π2Ic)   [ units m-1 or cm-1 ] 
 
J = 0,1,2 … 
M = -J, -(J-1) … J.  [ projection of momentum along z ] 
This is (2J+1) degenerate. 
 
Atomic Orbitals 
First, it is useful to refine our units onto the atomic scale: 

 
In atomic units, 

 
From (2) and (3), any atomic orbital can be written as separable: 

 
This is the “associated Laguerre Equation”. En = -1/(2n2) Hartree, n = 1,2,3 … 
 

Electron Spin 
 

Stern & Gerlach (1922) passed beam of Ag atoms through an inhomogeneous 
magnetic field (i.e. a field gradient was present  force). Beam split in two. 
Ag (5s1). If S = ½, then ms = ± ½ … 2 components with different energies in a 
magnetic field. 



 - 14 - 

These Notes are copyright Alex Moss 2003. They may be reproduced without need for permission. 
www.alchemyst.f2o.org 

1925 – splittings in atomic spectra. e- had intrinsic angular momentum of ½ h. 
1930 – Dirac. Obtained wave equation for e- by combining Quantum Mechanics and Special 
Relativity. Equation predicted s = ½, confirming the above. 

 
E = - µ . B 

If B is in the z-direction, s.B = szBz,  

 
Spin Wavefunctions 
 
Single electron: 

 
Satisfy usual angular momentum eigenvalue equations: 

 
Also, 

 
Two electrons: 
Only linear combinations of following possibilities – 

 
Possible values of Ms = m1 + m2 are: 
Ms = 1,0,-1 (S=1) and Ms = 0 (S=0). 
MS = S, S-1, .. –S  (2S+1) = 3 (triplet). 
MS = S, S-1, .. –S  (2S+1) = 1 (singlet). 
 
But what are corresponding 2 electron spin wavefunctions, | s, ms > ? 

| S = 1, Ms = +1 > = | α1 α2 > 
(as this is the only way to get Ms = +1). 
Similarly, 

| S = 1, Ms = -1 > = | β1 β2 > 
(Ms = -1). 
 
Both of these S=1 wavefunctions are symmetric wrt interchange of the 2 electrons (e1↔e2). 
Hence, the remaining S=1, Ms=0 component of the triplet states must be symmetric too [ Ms 
quantum number depends on where we choose to put the z-axis, which clearly cannot affect the 
exchange symmetry of a triplet state ]. 
 
Hence, only possibility for: 
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| S = 1, Ms = 0 > = symmetric combination of )|(|
2

1
2121 >+> αββα , where the term outside 

the brackets is a Normalisation Constant. 
Similarly, 

| S = 0, Ms = 0 > = )|(|
2

1
2121 >−> αββα , which has antisymmetric exchange symmetry. 

 
Pauli Exclusion Principle 
 
Suppose quantum system contains two indistinguishable particles 1 and 2 such that: 

ψ = ψ(1,2) 
i.e. ψ is a function of all space and spin coordinates. 

 
Repeat operation: 

 
Corollary 1: Exclusion Principle in Orbital Space. 
No 2 electrons can have the same set of 4 quantum number (n,l,ml,ms) within the orbital 
approximation. 
Combination with the Aufbau Principle gives the Periodic Table. 
Reason: 

ψ(2,1) = ψn,l, ml, ms(2) ψn,l,ml,ms(1) = ψn,l, ml, ms(1) ψn,l,ml,ms(2) = +ψ(1,2) 
But electrons are fermions so ψ(1,2) = -ψ(2,1). 
 
Corollary 2: Exclusion Principle in Real Space. 
2 electrons in a triplet state (S=1) cannot be at the same point in space. 

ψ(1,2) = ψspace x ψspin 

ψ(1,2) = ψ(r1,r2) x )|(|
2

1
2121 >+> αββα  

 
 
 
 
Thus, ψspace must be antisymmetric wrt e1↔e2. 

ψ(r2,r1) = - ψ(r1,r2) 
Setting r2 = r1 = r: 

ψ(r,r) = - ψ(r,r) 

Symmetric wrt e1↔e2
antisymmetric 

wrt e1↔e2 
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Therefore ψ(r,r) = 0 and | ψ(r,r) |2 = 0, so get a “Fermi Hole”. 
 
Basis of Hund’s 1st Rule: triplet states are lower in energy than singlet states, all other things – 
including the electron configurations – being equal. 
 

The Variational Method 
 
How to find good approximate solutions to problems that can’t be solved exactly. 

 
Where ψ = trial wavefunction and Eo = exact ground state energy. 

 
So, 

 
Suppose we have a trial wavefunction ψα that depends on a parameter α. Find the best α (most 
accurate wavefunction) by minimising: 

 
Example – Quartic Oscillator 

 
Similar to Harmonic Oscillator, so try that wavefunction as trial: 

 
Where, 

 
Hence, 
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Example 2 – Secular Equations 
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