

The Born Interpretation

Schrödinger

 ψ at a point x, has a probability for a particle being between x and x+dx proportional to $|\psi|^2 dx$. Therefore,

$$N^{2} \int \psi * \psi \, d\tau = 1$$
$$\Omega \psi = \omega \psi$$

 Ω = eigenvalue and ψ = eigenfunction.

When not an eigenfunction, must be a superposition or more than one wave function.

$$\begin{split} \varphi_{k}(x) &= C \sin kx + D \cos kx \quad E_{k} = \frac{k^{2}h^{2}}{2m} \\ & \text{Boundary Conditions, } \varphi = 0 \text{ at } x = 0, h. \\ & D = 0, \\ & \varphi(x) = C \sin kx, x = h. C = 0 \text{ carlier with Born Int.} \\ & \Theta = C \sin kk, \quad k = n\pi. \\ & \varphi_{n}(x) = C \sin \frac{\pi n x}{L}, \quad k = n\pi. \\ & \varphi_{n}(x) = C \sin \frac{\pi n x}{L}, \quad k = n\pi. \\ & C = \left(\frac{2}{L}\right)^{\frac{1}{2}} \text{ by Nermalisation.} \\ & Deriving Energies: \quad L = n \times \frac{1}{2} \lambda \quad \lambda = \frac{2L}{n}, \\ & P = \frac{P^{2}}{2m} = \frac{n^{2}h^{2}}{2\pi}. \end{aligned}$$

Tunnelling – possibility of finding particle outside box classically forbidden.

Vibrational Motion

These Notes are copyright Alex Moss 2003. They may be reproduced without need for permission. www.alchemyst.f2o.org

QUANTUM MECHANICS NOTES The Basics of Quantum Mechanics

Rotational Motion

$$E = \frac{P_{x}^{2}}{2m}, J = \pm pr \Rightarrow E = \frac{J_{z}^{2}}{2T}$$

$$J_{z} = \pm \frac{hr}{\lambda} \qquad \lambda = \frac{2\pi r}{mL} \qquad E = \frac{m_{L}^{2} \lambda^{2}}{2T}$$

$$Gyclic boundary condition : \varphi(\varphi+2\pi) = \varphi(\varphi)$$

$$Gives wavefunctions like: \qquad \psi_{m}(\varphi) = \frac{e^{im\varphi}}{(2\pi)^{4}} \qquad m_{L} = \pm \frac{(2\pi e)^{4}}{\pi}$$

$$E = L(L+1)\frac{h^{2}}{2T} \qquad L, L-1, \dots, -L \qquad m_{L} = 2L+1.$$

<u>Spectroscopy</u>

$$\widetilde{V} = \mathcal{R}_{H} \left(\frac{1}{n_{1}^{2}} - \frac{1}{n_{2}^{2}} \right)$$

$$\frac{\mathcal{R}_{ITZCOMBINATION}}{\text{wavenumber at any spectral line is the difference}$$

$$\frac{\mathcal{R}_{H}}{n_{2}^{2}}$$

Hydrogenics

Spin Orbit Coupling Electron has spin angular momentum, and this generates a magnetic field. Spin + orbit interactions $-j = l \pm \frac{1}{2}$ Multiplicity = 2S + 1

Postulates of Quantum Mechanics

<u>1a</u>: the state of a system of N particles is fully described by a function $\psi(r_1, r_2, ..., r_N; t)$ – the wavefunction.

NOTES: Spin omitted (for now).

1b: Born's Probabilistic Interpretation.

The probability that a system in a state ψ will be found in the volume element $d\tau = dr_1 dr_2 dr_2 dr_N$ is $\psi^*(r_1 \dots r_N, t) \psi(r_1 \dots r_N, t) d\tau$.

NOTES:

Statistical, even for 1 particle. $P(x,t) = |\psi(x,t)|^2$ is the probability density. Can deduce from here:

Normalisation -

$$\int_{all space} |\psi(r_1...r_N,t)|^2 d\tau = 1$$

Conserves probability.

Physically acceptable ψ :

- Single valued.
- Continuous.
- Finite.

Dirac's Bra-c-ket Notation –

$$\int \psi^* \hat{A} \psi_{-} d\tau \equiv \langle \psi | \hat{A} | \psi \rangle$$

$$\int \psi^* \psi \delta \tau \equiv \langle \psi | \psi \rangle$$

(i.e., left hand side is conjugate wf

<u>2a</u>: in quantum mechanics, observables are represented mathematically by operators: corresponding to every classical observable A there is a corresponding operator which is linear and hermitian.

NOTES: e.g. x, p_x, E, etc.

<u>3:</u> Measurement. When a system is in a state described by ψ :

- i) single measurement of an observable A always yields a single result an eigenvalue a_n of \hat{A} .
- ii) Mean value of A equals the expectation value <Â>

Define Expectation Value:

$$<\hat{A}>=\frac{\int \psi *\hat{A}\psi \,d\tau}{\int \psi *\psi \,d\tau} \equiv \int \psi *\hat{A}\psi \,d\tau \qquad [\text{ if }\psi \text{ is normalised }]$$

<u>Bra-c-ket:</u>

$$\langle \hat{A} \rangle = \langle \psi | \hat{A} | \psi \rangle$$
 if $\langle \psi | \psi \rangle = 1$.

NOTES:

From (i) – Probability Distribution:

Common Sense, as mean A = sum over all n of P_na_n .

From (ii) – must expand ψ in terms of eigenfunctions of \hat{A} .

$$\psi = \sum_{n} c_{n} f_{n}$$

$$\hat{A}\mathbf{f}_{n} = a_{n} f_{n}$$

$$< \hat{A} >= \int \psi * \hat{A} \psi \, \mathrm{d}\tau = \sum_{n,m} c_{n} * c_{m} \int f_{n} * \hat{A} f_{m} \, \mathrm{d}\tau = \sum_{n} |c_{n}|^{2} a_{n}$$
i.e. $P_{n} = |c_{n}|^{2}$

Probability P_n that particular value a_n is measures is $|c_n|^2$, where c_n is the coefficient of eigenfunction f_n of \hat{A} (in the expansion).

Dispersion in distribution of measurements is characterised by: Root mean square deviation (RMS) $\Delta A =$

$$(\Delta A)^{2} = <(\hat{A} - <\hat{A} >)^{2} > = <(\hat{A}^{2} - 2\hat{A} <\hat{A} > + <\hat{A} >^{2}) > (\Delta A)^{2} = <\hat{A}^{2} > - <\hat{A} >^{2}$$

Special Case -

 ψ is an eigenfunction of \hat{A} , so $\hat{A}\psi = a\psi$. < $\hat{A} >$ is:

 $\langle \hat{A} \rangle = \int \psi * \hat{A} \psi d\tau = a_{\varepsilon} \int \psi * \psi d\tau = a_{\varepsilon}$

 $P_n = 1 \text{ or } 0 \text{ (n}=\varepsilon \text{ or } n\neq\varepsilon)$, then dispersion free – single measure value, $a_{\varepsilon} < \hat{A} > = a_{\varepsilon}, < \hat{A}^2 > = a_{\varepsilon}^2$, $\Delta A = 0$.

Thus, if ψ is an eigenfunction of \hat{A} then observable A will always yield the same result.

2b: Choice of Operators.

OBSERVABLE	OPERATOR
Position, x	â
Linear momentum, p _x	$\hat{p}_x = -i\hbar\frac{\partial}{\partial x}$
Total Energy, E	$\hat{E} = i\hbar \frac{\partial}{\partial t}$

All linear and hermitian.

Linearity -

Hermiticity – is Hermitian if:

EXAMPLES:

Operator is linear if:
A (ay1 + by2) = aAy1 + bAy2
Examples:
x is linear as
$$-x(ayi + by2) = xayi + xby2$$

I is not linear as (ay1 + by2)' + (ay1)' + (by2)
LINEAR
 dx
 $i dx$
 $i dx$

$$J_{x} = -\left(\int_{-\infty}^{\infty} \psi_{1}^{*}\psi_{1}^{*}\right)^{*} = -\langle\psi_{1}\right|_{\frac{1}{2}}^{2} - \int_{-\infty}^{\infty} \psi_{1}^{*}\psi_{1}$$

$$= -\left(\int_{-\infty}^{\infty} \psi_{1}^{*}\psi_{1}^{*}\right)^{*} = -\langle\psi_{1}\right|_{\frac{1}{2}}^{2} |\psi_{1}\rangle^{*}$$

$$NoT \quad Hermitia \qquad (all Heimitian)$$

$$Note: x_{3}: \frac{1}{2} \frac{\partial^{2}}{\partial x^{2}} - All \quad OBSGRVABLES$$

$$\frac{1}{\partial x} = - Not \quad an \quad observable$$

The eigenvalues of Hermitian Operators are real:

$$\widehat{A}|_{n} \ge a_{n} \ln \ge \langle n | n \rangle = 1$$
Then,

$$\langle n | \widehat{A}|_{n} \ge \langle n | \widehat{A}|_{n} \ge a_{n} \langle n | \widehat{A}|_{n} \ge a_{n} \langle n | \widehat{A}|_{n} \ge \langle n | \widehat{A}|_{n} \ge a_{n} \langle n | \widehat{A}|_{n} \ge \langle$$

Orthonormality -

The eigenfunctions for different eigenvalues of Hermitian Operators are orthogonal, i.e. if $\hat{A} | f_n > a_n | f_n > and \hat{A} | f_m > = a_m | f_m >$, where $a_m \neq a_n$, then $< f_m | f_n > = 0$.

$$\widehat{A}|m\rangle = a_{m}|\psi_{m}\rangle$$
 & $\widehat{A}|n\rangle = a_{n}|n\rangle$
 $a_{m} \neq a_{n}$ (def) & \widehat{A} Hermitian

Time Dependence and Stationary States

Classical Observable \rightarrow Quantum Operator. e.g. Kinetic Energy,

$$T = \frac{1}{2} m (p_x^2 + p_y^2 + p_z^2) \Rightarrow \hat{T} = \frac{1}{2} m (\hat{p}_x^2 + \hat{p}_y^2 + \hat{p}_z^2)$$

$$\therefore \hat{T} = \frac{-\hbar^2}{m} (\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}) = \frac{-\hbar^2}{m} \nabla^2$$

Potential Energy,

V = V(x,y,z), so $\hat{V} = V(\hat{x}, \hat{y}, \hat{z})$

Total Energy = T + V, \rightarrow H(x,p_x) [Hamilton's Function] Also note that the total energy operator from P_{2b} is $\hat{E} = i\hbar \frac{\partial}{\partial t}$.

$$H\psi(r_i,t) = i\hbar \frac{\partial}{\partial t}\psi(r_i,t)$$
 - Time Dependent Schrodinger Equation, TDSE.

H is independent of time (in conservative systems), so always separable solutions to the TDSE of the form:

$$\begin{split} \psi(r^{n}_{d;t}) &= \phi_{n}(r^{n})f(t) \\ \text{Note that} \\ \text{if } f = E_{n}f(t) \implies f(t) \propto e^{-iE_{n}t/4\pi}, \\ \text{Hence,} \qquad \psi(r^{n},t) &= e^{-iE_{n}t/4\pi}\phi_{n}(r^{n}) \\ \text{Since} \qquad \frac{1}{\phi_{n}(r^{n})}\hat{H}\phi_{n}(r^{n}) = \frac{i\pi}{f(t)}\frac{\partial f(t)}{\partial t} = E_{n} (\text{costrue}) \\ \text{H}\phi(r^{n}) &= E_{n}\phi_{n}(r^{n}) - T_{ne} \\ \text{independent} \\ \text{S.E.} \end{split}$$

A system in a state described by this is said to be in a stationary state.

Its energy is a precise quantity (P₃) and no measurable property of the system changes with time, i.e. <A>(t) = <A>(0) where <A>(t) is the expectation value of operator A at time t. Proof:

$$(A \times E) = \int \psi^{*}(r^{\mu}, E) \widehat{A} \psi(r^{\mu}, E) d\tau$$

= $\int e^{-C e_{n} E/\pi} \widehat{A}_{n}(r^{n})^{*} \widehat{A} (e^{-iE_{n}E/\pi} \widehat{\Phi}_{n}(r^{n}) d\tau$
= $\int \phi_{n} e^{C(r^{\mu}) \widehat{A}} \phi_{n}(r^{n}) d\tau$
= $(\widehat{A})(0)$

NOTES:

This resolves the "radiation paradox" of old Quantum Mechanics. Stationary State \rightarrow still not solved the TDSE. Need ϕ_n from TISE.

A common relation that is useful is:

at is useful is:
TDSE: Prove
$$\frac{d}{dt}\langle A \rangle = \frac{i}{\pi} \langle [H, A] \rangle$$

Use: $[H, \frac{d}{dt} + \psi(x_{3} + t) = H\psi(x_{3} + t)$ (i)
 $\langle A \rangle = \langle \psi | A | \psi \rangle = \int_{-\infty}^{\infty} \psi(x_{3} + t)^{*} A \psi(x_{3} + t) d_{3}c$
 $\frac{d}{dt} \langle \psi | A | \psi \rangle = \langle \frac{d}{dt} | A | \psi \rangle + \langle \psi | \frac{dA}{dt} | \psi \rangle + \langle \psi | A | \frac{d\psi}{dt} \rangle$
From (i) $\frac{d|\psi}{dt} = \frac{H|\psi}{it} \rangle_{R} \frac{d}{dt} \frac{\langle \psi | - \langle H\psi |}{it}$
 $\Rightarrow \frac{-1}{it} \langle H\psi | A | \psi \rangle + \frac{1}{itt} \langle \psi | A | H\psi \rangle$
 $= \frac{-1}{itt} \langle \psi | H | \psi \rangle + \frac{1}{ittt} \langle \psi | A | H | \psi \rangle$
 $= \frac{i}{tt} \langle [HA] \rangle$

To use this, it is necessary to understand what a commutator is.

ABf \neq BAf in general, where A and B are operators.

Define:

Commutator [A,B] of A & B:

$$[A,B] = AB - BA$$
Compared the effects on a ghost function, e.g.
$$[x, p_x] f = (xp_x - p_xx) f = -ih (x(d/dx) - (d/dx)x) f = -ih (x(df/dx) - (d/dx)(xf)) = ihf$$
Therefore $[x,p_x] = ih$.

- 7 -

If [A,B] = 0, they are said to commute. For example, $[y,p_x] = 0$ (independent x,y).

NOTES:

- [B,A] = [A,B]
- $[A, \alpha B] = \alpha [A, B]$
- [A,B+C] = [A,B] + [A,C]
- [A,BC] = [A,B]C + B[A,C]

<u>Uses:</u>

From P₃, $A\psi = a\psi$ and $B\psi = b\psi$. This implies precise measurement of A and B, therefore [A,B] = 0 \rightarrow precise value for each observable can be known simultaneously.

If [A,B] = 0, then there is an eigenfunction of A which is simultaneously an eigenfunction of B.

If $[A,B] \neq 0$, it is NOT generally possible to measure the observables precisely and simultaneously.

These observables are said to be complementary or conjugate.

$$E_{xamples} = \frac{1}{2m} \left[p_{x}^{2} x \right] = \frac{1}{2m} \left(p_{x} \left[p_{x} x \right] + p_{x} \left[p_{x}, x \right] \right)$$

$$= \frac{1}{2m} \left(-2p_{x}^{2} t \right)$$

$$= -\frac{1}{p_{x} t}$$

$$\left[H_{,p_{x}} \right] = \left[V(x), p_{x} \right] = -\frac{1}{tk} \left[V(x), \frac{1}{t} - \frac{1}{t} \right]$$

$$= -\frac{1}{tk} \left(V(x), \frac{1}{t} - \frac{1}{t} - \frac{1}{t} \right)$$

$$= -\frac{1}{tk} \left(V(x), \frac{1}{t} - \frac{1}{t} - \frac{1}{t} \right)$$

$$= -\frac{1}{tk} \left(V(x), \frac{1}{t} - \frac{1}{t} - \frac{1}{t} \right)$$

$$= -\frac{1}{tk} \left(\frac{1}{t} - \frac{1}{t} \right)$$

Heisenberg's Uncertainty Principle:

$$\Delta A \Delta B \ge \frac{1}{2} | < [A,B] > |$$

Where, $(\Delta A)^2 = \langle \hat{A}^2 \rangle - \langle \hat{A} \rangle^2$ e.g. $[x,p_x] = ih$, $\Rightarrow \langle [x,p_x] \rangle = ih$, so $|\langle [x,p_x] \rangle| = h$ Hence, $\Delta x \Delta p_x \ge h/2$

Applications of Quantum Mechanics

1 D free particle (no Potential)

$$H = \frac{px^{2}}{2m} = \frac{-h^{2}}{2m} \frac{\partial^{2}}{\partial x^{2}}$$

$$TSE, H\phi = E\phi = 0$$
(1) $\frac{\partial^{2}}{\partial x^{2}} + k^{2} d(x) = 0$ $k = \sqrt{2mE}$

$$\frac{1}{2m} = \frac{1}{2m} \frac{1}{2m$$

Note that general solution to (1) is a linear combination:

$$\Phi(x) = A'\phi_+(x) + B'\phi_-(x)$$

& $p_x\phi(x) = p[A'\phi_+ - B'\phi_-]$

. .

General interpretation using P₃ is that there is always dispersion-free energy for the above, but the relative probability of finding the particle moving in a given direction with momentum ±hk is $|A'|^2 |B'|^2$

General Solution to the Schrödinger Equation from the above (2) & (3):

$$d(z) = Ae^{iPX/4} + B(e^{-iPX/4})$$

= A cos $\left(\frac{PX}{4}\right) + B$ sin $\left(\frac{PX}{4}\right)$
A = A'+ \hat{B}'
B = $\hat{c}(A'-B')$

Compare to classical standing waves,

Therefore $2\pi/\lambda = p/h$, $\rightarrow \lambda = h/p$

 $\cos(2\pi x/\lambda) + \sin(2\pi x/\lambda)$ [De Broglie Relation]

Quantisation – Particle in a Box

$$d=1, \quad \hat{H} = \frac{p_{z}^{z}}{zm} + V(z) \quad \text{with} \quad V(z) = \begin{cases} 0 : 0 < x < l \\ -\infty : x < 0, x > l \end{cases} \quad \left| v = 0 \right|^{1/2} d = 0 \\ 0 : 0 < x < 0, x > l \end{cases}$$

Outside the Box: $\phi(x) = 0$ – no particle here. Inside the Box: V(x) = 0 so TISE same as free particle above. Solution as above is: $\phi(x) = A \cos (px/h) + B \sin (px/h)$

 $\psi(x)$ is continuous, therefore Boundary Condition: $\phi(0) = 0 = \phi(L)$. Hence, $\phi(0) = 0 \rightarrow A = 0.$ $\phi(L) = 0 \rightarrow B \sin(p^{pL}/p) = 0.$ Thus, $^{pL}/_{h} = n\pi$, where n = 1,2,3... Also, $p = \sqrt{2mE}$:

$$E_n = \frac{n^2 h^2}{8mL^2}$$
, n = 1,2,3...

Quantisation arose from the Boundary Condition. Quantum number n is established.

$$\begin{aligned} H & \phi_n(x) = E_n \phi_n(x). \\ \phi_n(x) = B \sin(n\pi x/L) \text{ for } 0 \le x \le L \\ \phi_n(x) = 0 \text{ for } x \le L, \text{ or } x \ge L \end{aligned}$$

B, such that
$$\phi_n(x)$$
 is normalised, is found by:

$$\int_{0}^{L} |\phi_n(x)|^2 dx = 1$$
$$\therefore B = \sqrt{\frac{2}{L}}$$

Pictorially,

Probability Density $|\phi_n(x)|^2 \rightarrow$ tends to classical limit (**Correspondence Principle**)

Energy Level Separation:

$$\Delta E = E_{n+1} - E_n = \frac{(2n+1)h^2}{8mL^2}$$

These Notes are copyright Alex Moss 2003. They may be reproduced without need for permission. www.alchemyst.f2o.org

So, $\Delta E \rightarrow 0$ as $L \rightarrow \infty$

Extra Dimensions:

d = 2, E_n =
$$\frac{h^2}{8m} [\frac{n_1^2}{Lx^2} + \frac{n_2^2}{Ly^2}]$$

Lx = Ly \rightarrow square box. n₁ = n₂ is single degenerate, while n₁ \neq n₂ is doubly degenerate. Degeneracy is a consequence of symmetry.

Harmonic Oscillator

Classically, E = T + V = $p_x^2/2\mu + \frac{1}{2} kx^2$ Quantum Mechanics:

$$E = \frac{-h^2}{2\mu} \frac{\partial^2}{\partial x^2} + \frac{1}{2}kx^2$$

$$H\psi = E\psi \stackrel{=}{\rightarrow} \left(\frac{-k^2}{2\mu} \frac{\partial^2}{\partial x^2} + \frac{1}{2}kx^2\right)\psi(x) = E\psi(x) \quad (s.E)$$
(rude Solve:
 $x \rightarrow \pm \infty = \sum \quad V(x) \rightarrow \infty$
 $f = |\psi(x)|^2 \rightarrow \infty$
Simple function that decays to $0 - G$ -mission,
 $\psi(x) \rightarrow 0$
Simple function that decays to $0 - G$ -mission,
 $\psi(x) = e^{-\alpha x^2/2}$
Test: $\psi'(x) = -\alpha xe^{-\alpha x^2/2} = -\alpha x\psi(x)$
 $\psi''(x) = (\alpha^2 x^2 - \alpha)\psi(x)$
 \vdots
 $\left(\frac{-k}{2\mu} \frac{\partial^2}{\partial x^2} + \frac{1}{2}kx^2\right)\psi(x) = \left[\frac{-k^2}{2\mu}(\alpha^2 x^2 - \alpha) + \frac{1}{2}kx^2\right]\psi(x) = E\psi(x)$

Satisfied for all x if both:

$$\frac{t^{2}\alpha^{2}}{2\mu} = \frac{1}{2}k$$
and
$$\frac{t^{2}\alpha}{2\mu} = E$$

$$\frac{1}{2}\mu k \qquad \& E = \frac{1}{2}k\int \frac{1}{\mu} E = \frac{1}{2}k\omega$$
Hence,
$$\psi_{0}(x) = N_{0}e^{-\alpha x^{2}/2}$$

$$E_{0} = \frac{1}{2}k\omega \qquad (Ground Vib State)$$

Normalise,

$$\int_{-\infty}^{\infty} dx \ \psi_0^2(x) = 1$$

e. $N_0^2 \int_{-\infty}^{\infty} dx \ e^{-\alpha x^2} \Rightarrow N_0 = \left(\frac{\alpha}{\pi}\right)^{1/4}$

For remaining solutions try:

$$\psi_n(x) = P_n(x)e^{-\alpha x^2/2}$$

 $P_n(x) = polynomial in x.$

Gives second order differential equations for $P_n(x)$ when subbed into the Schrodinger Equation. The solutions are called Hermite Polynomials.

$$P_n(x) = H_n \left(\sqrt{\alpha} x \right)$$

Eigenvalues $E_n = (n+\frac{1}{2})h\omega$, n = 0,1,2...

 $\begin{array}{ll} H_{o}\left(\sqrt{-\alpha} \; x\right) = 1 & [\; even \; in \; x \;] \\ H_{1}\left(\sqrt{-\alpha} \; x\right) = 2 \sqrt{-\alpha} \; x & [\; odd \; in \; x \;] \\ H_{2}\left(\sqrt{-\alpha} \; x\right) = 4\alpha x^{2} - 2 & [\; even \; in \; x \;] \\ \dots \; etc. \end{array}$

Hence,

Particle on a Ring

To get H: Transform to polar cords. Fix r, look at angular component of H. Transforming to polar coordinates:

$$\frac{\partial}{\partial z} \Big|_{y} = \frac{\partial r}{\partial x} \Big|_{y} \frac{\partial}{\partial r} \Big|_{\varphi} + \frac{\partial \varphi}{\partial x} \Big|_{y} \frac{\partial}{\partial \varphi} \Big|_{r}$$

$$\frac{\partial}{\partial y} \Big|_{x} = -\frac{\partial r}{\partial y} \Big|_{z} \frac{\partial}{\partial r} \Big|_{\varphi} + \frac{\partial \varphi}{\partial y} \Big|_{x} \frac{\partial}{\partial \varphi} \Big|_{r}$$
where,
$$\frac{z}{y} = r \cos \varphi + \frac{\partial r}{\partial x} \Big|_{y} = -\frac{\sin \varphi}{2} \frac{\partial \varphi}{\partial y} \Big|_{z} = -\frac{\sin \varphi}{2} \frac{\partial \varphi}{\partial y} \Big|_{z} = \frac{\cos \varphi}{2}$$
Hence,
$$\frac{z}{2y} \left(\frac{\partial r}{\partial x^{2}} + \frac{\partial r}{\partial y^{2}} \right) = \frac{t^{2}}{2y} \left(\frac{\partial r}{\partial r^{2}} + \frac{i}{r} \frac{\partial}{\partial r} + \frac{i}{r^{2}} \frac{\partial^{2}}{\partial \varphi^{2}} \right)$$

Fixing r means that $\frac{\partial^2}{\partial r^2} \& \frac{1}{r} \frac{\partial}{\partial r}$ can be dropped. $\psi = \psi(\phi)$: $d\psi/dr = 0 = d^2 \psi/dr^2$. Thus

Thus,

$$\hat{H} = \frac{t^2}{2\mu^2} \frac{\delta^2}{\delta \phi^2} = \frac{-t^2}{2I} \frac{\delta^2}{\delta \phi^2} \qquad I = \mu^2$$

$$\hat{H} = \frac{\hat{L}_2^2}{2I} \qquad \hat{L}_2^2 = -it \frac{\partial}{\partial \phi} \qquad \text{operator}$$

$$[\hat{H}, \hat{L}_2] = \hat{H}\hat{L}_2 - \hat{L}_2\hat{H} = \frac{i}{2I} (\hat{L}_2^2 - \hat{L}_2) = 0$$

Therefore eigenfunctions of H can be chosen to be eigenfunctions of L_z.

Then,

$$L_{z} \Psi_{m}(\phi) = -i \frac{1}{2 \sqrt{2}} \Psi_{m}(\phi) = m \frac{1}{2 \sqrt{2}} \Psi_{m}(\phi)$$

$$s_{z} = m \frac{1}{2 \sqrt{2}} \Psi_{m}(\phi)$$

$$\psi_{m}(\phi) = i \frac{1}{2 \sqrt{2}} \Psi_{m}(\phi)$$

$$\frac{1}{2 \sqrt{2}} \Psi_{m}(\phi) = i \frac{1}{2 \sqrt{2}} \Psi_{m}(\phi)$$

$$\psi_{m}(\phi) = N_{m} \frac{1}{2} \frac{1}{2 \sqrt{2}} \Psi_{m}(\phi)$$

$$\psi_{m}(\phi) = N_{m} \frac{1}{2} \frac{1}{2 \sqrt{2}} \Psi_{m}(\phi)$$

$$e^{i m 2\pi} = 1 \Rightarrow m = i n \frac{1}{2} \frac{1}{2 \sqrt{2}} \frac{1}{2 \sqrt{2}} \frac{1}{2 \sqrt{2}}$$

$$\int_{0}^{2\pi} d\phi \left[|\psi_{m}(\phi)|^{2} = N_{m}^{2} 2\pi = I \Rightarrow N_{m} = \frac{1}{\sqrt{2}m} , \forall m$$

Therefore normalised eigenfunctions of H = $\frac{1}{2I}L_z^2$ which satisfy the boundary condition are:

$$\begin{aligned}
\varphi_{m}(\phi) &= \frac{1}{\sqrt{2n}} e^{im\phi} \\
L_{z} \varphi_{m}(\phi) &= m t \psi_{m}(\phi) \\
H \psi_{m}(\phi) &= \frac{m t t^{2}}{2I} \psi_{m}(\phi) = E_{m} \psi_{m}(\phi)
\end{aligned}$$

NB: $E_m = \frac{m^2 h^2}{2I}$ is doubly degenerate for |m| > 0.

Particle on a Sphere

Transform to polar cords. Consider angular parts. Separate θ/ϕ dependence. $\hat{\mu} = \frac{-t^2 \nabla^2}{2}$ $x = r \sin \theta \cos \phi$

$$y = r \sin \Theta \sin \phi$$

$$z = r \cos \Theta$$

Separating variables,

Ordinary Differential Equation for $(H)(\theta)$, the Legendre Equation.

Solutions are associated Legendre functions,

$$\begin{split} (\Theta) &= P_{\mathbb{R}}^{\mathsf{m}}(\cos \Theta) \\ &= \operatorname{eigenvalues}(\lambda) \quad \operatorname{are} \\ &= f((l+1)), \quad \text{for } l = \operatorname{Iml}(\operatorname{Im}(+1), \operatorname{Im}(+2), \operatorname{etc}) \\ &= f((l+1)), \quad \text{for } l = \operatorname{Iml}(\operatorname{Im}(+1), \operatorname{Im}(+2), \operatorname{etc}) \\ &= f(l+1), \quad l \in \mathcal{I}_{\mathcal{I}}(L) \\ &= f(l+1), \quad l \in \mathcal{I}(L) \\ &= f(l+1), \quad l$$

i.e. m = -l, -(l-1), ... 0, ... (l-1), l.

This gives the spherical harmonics:

$$\varphi(\theta, \phi) = Y_{l,m}(\phi, \theta) = N_{l,m} P_{l}^{m}(\cos \theta) e^{im\phi}$$

$$f_{l}^{m}(\cos \theta) e^{im\phi}$$

Which satisfy:

$$\begin{split} \hat{L}^2 \ \chi_{i,m}(\Theta, \varphi) &= t^2 ((L+1) \ \chi_{i,m}(\Theta, \varphi) \\ \hat{L}_2 \ \chi_{i,m}(\Theta, \varphi) &= t_{i,m} \ \chi_{i,m}(\Theta, \varphi) \\ l &= 0, 1, 2... \\ M &= -l_j - (L+1), ... + l \qquad [2l+1] \ values \\ & ANG. MOM. \ PROJECTION \ Q.NO. \end{split}$$

Molecular Rotation

Equivalent to free motion of particle with reduced mass on surface of a sphere (radius r_e).

Therefore H =
$$\frac{1}{2I}J^2$$
 [J not L – convention for molecular systems]

$$\hat{H}_{\varphi} = E_{\varphi}$$

$$\int_{\frac{\pi}{2T}}^{\frac{\pi}{2T}} \hat{J}_{\pi,\mu}(\Theta, \varphi) = \frac{\pi^{2} \pi^{2} \pi^{2}}{2T}$$
[rotational energy levels]
[units m⁻¹ or cm⁻¹]

i.e. $E_J = Bhc J(J+1)$ B = h/(8 π^2 lc)

J = 0, 1, 2 ...M = -J, -(J-1) ... J. This is (2J+1) degenerate.

[projection of momentum along z]

Atomic Orbitals

First, it is useful to refine our units onto the atomic scale:

$$H = -\frac{\hbar^{2}}{2m} \nabla^{2} - \frac{e^{2}}{4\pi\epsilon_{o}r}$$
hat $a_{0} = \frac{4\pi\epsilon_{o}\hbar^{2}}{m_{e}e^{2}} (1), E_{h} - \frac{e^{2}}{4\pi\epsilon_{o}a_{0}} (2)$
Convert lengths: $x \to a_{0}x', y \to a_{0}y'$ etc.
$$\Rightarrow H - \frac{-\hbar^{2}}{2m} \frac{Q'^{2}}{a_{0}^{2}} - \frac{e^{2}}{4\pi\epsilon_{o}a_{0}r'}$$
Apply $(2): H = -\frac{\hbar^{2}}{2m} \frac{Q'^{2}}{a_{0}^{2}} - \frac{E_{h}}{r'}$

In atomic units,

$$\begin{aligned} \hat{H} = -\frac{1}{2} \nabla^2 - \frac{1}{F} \\ [H_{1}L_{2}] = 0 &= \frac{1}{2} \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2}F^{2} & F - \frac{L^{2}}{F^{2}} \end{bmatrix} - \frac{1}{F} \\ (i) & \hat{H} \psi_{nlm}(r, G, \Phi) &= E_{n} \psi_{nlm}(r, G, \Phi) & n = 1, 2, 3 \\ (z) & \hat{L}^{2} \psi_{nlm}(r, G, \Phi) &= L(L+1) \psi_{nlm}(r, G, \Phi) & (1 = 0, 1, 2 - (n-1)) \\ (3) & \hat{L}_{2} \psi_{nlm}(r, G, \Phi) &= m \psi_{nlm}(r, G, \Phi) & m = -(, -((-1), -0, -t)) \end{aligned}$$

From (2) and (3), any atomic orbital can be written as separable:

$$\psi_{n,m}(r, \theta, \phi) = R_{nl}(r) \chi_{n}(\theta, \phi)$$

This is the "associated Laguerre Equation". $E_n = -1/(2n^2)$ Hartree, n = 1,2,3...

Electron Spin

Stern & Gerlach (1922) passed beam of Ag atoms through an inhomogeneous magnetic field (i.e. a field gradient was present \rightarrow force). Beam split in two. Ag (5s¹). If S = ½, then m_s = ± ½ ... 2 components with different energies in a magnetic field.

1925 – splittings in atomic spectra. e⁻ had intrinsic angular momentum of $\frac{1}{2}$ h. 1930 – Dirac. Obtained wave equation for e⁻ by combining Quantum Mechanics and Special Relativity. Equation predicted s = $\frac{1}{2}$, confirming the above.

If B is in the z-direction, s.B = s_zB_z , \rightarrow

$$\frac{1}{2} \frac{s_2}{t_1} + \frac{s_1}{2} \cdot E(m_s = \frac{1}{2}) + 2 \text{ different}$$

$$\frac{1}{2} \frac{s_2}{t_1} = -\frac{1}{2} \cdot E(m_s = \frac{1}{2}) + 2 \text{ different}$$

energies

Spin Wavefunctions

Single electron:

$$1 = \frac{1}{2}, m_{s} = \frac{1}{2} > = 1 \approx 7 \qquad \uparrow \\ 1 = \frac{1}{2}, m_{s} = -\frac{1}{2} > = 1 \approx 7 \qquad \downarrow$$

Satisfy usual angular momentum eigenvalue equations:

$$s_{2}|s,m_{s}\rangle = t^{2}s(s+1)|s,m_{s}\rangle = b_{2}$$

 $s_{2}|s,m_{s}\rangle = t^{2}m_{s}|s,m_{s}\rangle m_{s} = b_{3}$

Also,

$\langle x x \rangle = 1 = \langle B B \rangle$	Normalised over spin coordinates
calp>=O= <bla></bla>	orthogonal.
Cleigenfunction of Hern	nition
operator sz u/ di eigenvalues	Herent

Two electrons:

Only linear combinations of following possibilities -

		m 1	mz	' - ' S
TT	1~, ~2)	12	1/2	1
Ť↓	1 x, B2>	1/2	-1/2	0
11	1 B, ~2>	-1/2	1/2	0
11	IB, B2>	- 1/2	- 1/z	-1-

~

Possible values of $M_s = m_1 + m_2$ are: $M_s = 1,0,-1$ (S=1) and $M_s = 0$ (S=0). $M_S = S, S-1, ... -S \rightarrow (2S+1) = 3$ (triplet). $M_S = S, S-1, ... -S \rightarrow (2S+1) = 1$ (singlet).

But what are corresponding 2 electron spin wavefunctions, | s, m_s > ? | S = 1, M_s = +1 > = | $\alpha_1 \alpha_2$ > (as this is the only way to get M_s = +1). Similarly,

 $| S = 1, M_s = -1 > = | \beta_1 \beta_2 >$

 $(M_s = -1).$

Both of these S=1 wavefunctions are symmetric wrt interchange of the 2 electrons ($e_1 \leftrightarrow e_2$). Hence, the remaining S=1, $M_s=0$ component of the triplet states must be symmetric too [M_s quantum number depends on where *we choose* to put the z-axis, which clearly cannot affect the exchange symmetry of a triplet state].

Hence, only possibility for:

| S = 1, M_s = 0 > = symmetric combination of $\frac{1}{\sqrt{2}}(|\alpha_1\beta_2\rangle + |\beta_1\alpha_2\rangle)$, where the term outside

the brackets is a Normalisation Constant. Similarly,

 $|S = 0, M_s = 0 > = \frac{1}{\sqrt{2}} (|\alpha_1 \beta_2 > - |\beta_1 \alpha_2 >)$, which has antisymmetric exchange symmetry.

Pauli Exclusion Principle

Suppose quantum system contains two indistinguishable particles 1 and 2 such that:

i.e. ψ is a function of all space and spin coordinates.

Let
$$P_{12}\psi(1,2) = \psi(2,1) = e^{i\alpha}\psi(1,2)$$

 $P_{12}\psi(1,2) = \psi(2,1) = e^{i\alpha}\psi(1,2)$
 $P_{12}e_{12}$
 $P_{12}e_{12}e_{12}$
 $P_{12}e_$

Repeat operation:

$$P_{12}^{2}\psi(1,2) = \psi(1,2) = e^{2i\alpha}\psi(1,2)$$

$$=) e^{2i\alpha} = 1 & \cdots e^{i\alpha} = +1 \text{ or } -1.$$
So, either symmetric : $e^{i\alpha} = 1.$
or ortisymmetric : $e^{i\alpha} = -1.$
(wrt to exchange).

$$(\text{wrt to exchange}).$$

$$(wrt to exchange).$$

$$(0) = bosons$$

$$(\text{integer spin})$$

$$(2,1) = \pm \psi(1,2)$$

$$(0) = fermions.$$

Corollary 1: Exclusion Principle in Orbital Space.

No 2 electrons can have the same set of 4 quantum number (n,l,m_l,m_s) within the orbital approximation.

Combination with the Aufbau Principle gives the Periodic Table. Reason:

 $\psi(2,1) = \psi_{n,l, ml, ms}(2) \psi_{n,l,ml,ms}(1) = \psi_{n,l, ml, ms}(1) \psi_{n,l,ml,ms}(2) = +\psi(1,2)$ But electrons are fermions so $\psi(1,2) = -\psi(2,1)$.

Corollary 2: Exclusion Principle in Real Space. 2 electrons in a triplet state (S=1) cannot be at the same point in space. $\psi(1,2) = \psi_{\text{space X } \psi_{\text{spin}}}$

$$\psi(1,2) = \psi(r_1,r_2) \times \frac{1}{\sqrt{2}} (|\alpha_1\beta_2\rangle + |\beta_1\alpha_2\rangle)$$
antisymmetric

Symmetric wrt e₁↔e₂

Thus, ψ_{space} must be antisymmetric wrt $e_1 \leftrightarrow e_2$.

 $\psi(r_2, r_1) = - \psi(r_1, r_2)$

wrt e₁↔e₂

Setting $r_2 = r_1 = r$:

 $\psi(\mathbf{r},\mathbf{r}) = -\psi(\mathbf{r},\mathbf{r})$

These Notes are copyright Alex Moss 2003. They may be reproduced without need for permission. www.alchemyst.f2o.org Therefore $\psi(r,r) = 0$ and $|\psi(r,r)|^2 = 0$, so get a "Fermi Hole".

Basis of Hund's 1st Rule: triplet states are lower in energy than singlet states, all other things – including the electron configurations – being equal.

The Variational Method

How to find good approximate solutions to problems that can't be solved exactly.

$$E = \frac{\langle \psi | H | \psi \rangle}{\langle \psi | \psi \rangle} \geqslant E_{\circ}$$

Where ψ = trial wavefunction and E_o = exact ground state energy.

$$\psi = \frac{2}{5} c_i \psi_i \quad (expansion theorem)$$

$$(where, \qquad H \psi_i = E_i \psi_i \quad \& \quad \langle \psi_i | \psi_j \rangle = \delta_{ij} \quad (=i \text{ if } i = j \\ = 0 \text{ otherwise})$$

$$(\forall \mu | \mu \rangle = \sum_{ij} c_i^* \langle \psi_i | H^* | \psi_j \rangle c_j = \sum_{ij} E_j \langle \psi_i | \psi_j \rangle c_i^* c_j = \sum_{ij} E_j \langle \psi_i | \psi_j \rangle c_i^* c_j = \sum_{ij} E_j \langle \psi_i | \psi_j \rangle c_i^* c_j = \sum_{ij} E_j \langle \psi_i | \psi_j \rangle c_i^* c_j = \sum_{ij} E_j \langle \psi_i | \psi_j \rangle c_i^* c_j = \sum_{ij} E_j | c_j |^2$$

$$\Rightarrow F_0 \sum_{ij} | c_j |^2 \quad (a = E_j \Rightarrow E_0)$$

$$\& \text{ similarly,}$$

$$\langle \psi | \psi \rangle = \sum_{ij} c_i^* \langle \psi_i | \psi_j \rangle c_j^* = \sum_{ij} | c_j |^2$$

So,

$$E = \frac{\langle \psi | H | \psi \rangle}{\langle \psi | \psi \rangle} \ge \frac{E \cdot \xi |_{cj}|^2}{\xi |_{cj}|^2} = E_0$$

Suppose we have a trial wavefunction ψ_{α} that depends on a parameter α . Find the best α (most accurate wavefunction) by minimising:

$$E(a)$$

 $E(a)$
 $E(a)$
 $= 0$
 $d = 0$
 $d = 0$

Example - Quartic Oscillator

$$H = -\frac{t^2}{2\mu} \frac{d^2}{dx^2} + \frac{1}{2}kx^4$$

Similar to Harmonic Oscillator, so try that wavefunction as trial:

~

$$(\psi_{x}(x)) = e^{-\frac{1}{2}/2}$$
 (not Normalised)

=)
$$\psi_{x}^{*}(x) = \left[-\frac{4}{2}(a^{2}x^{2} - \alpha) + \frac{1}{2}kx^{4}\right]\psi_{x}(x)$$

=) $H\psi_{x}(x) = \left[-\frac{4}{2}(a^{2}x^{2} - \alpha) + \frac{1}{2}kx^{4}\right]\psi_{x}(x)$
 $\therefore \langle \psi_{\alpha}|H^{\dagger}\psi_{\alpha}\rangle = \frac{4}{2}\sqrt{1_{0}} - \frac{4}{2}\frac{\alpha^{2}}{2}T_{2} + \frac{1}{2}kT_{1}$
 $\& \xi\psi_{\alpha}|\psi_{\alpha}\rangle = T_{0}$

Where,

$$T_{n} = \int_{\infty}^{\infty} dx \ x^{2n} e^{-xx^{2}}$$
$$= \frac{1 \cdot 3 \cdot 5}{(2x)^{n}} \int_{\infty}^{\pi}$$

Hence,

$$E(\alpha) = \frac{\zeta_{\psi}(1)H_{\psi}(1)}{\zeta_{\psi}(1)} = \frac{t^{2}}{2\mu} - \frac{t^{2}}{2\nu} - \frac{1}{2\nu} + \frac{1}{2} + \frac{1}{4} + \frac{1}{4}$$

$$= \frac{t^{2}}{2\mu} - \frac{t^{2}}{2\mu} - \frac{2}{2\mu} + \frac{1}{2} + \frac{1}{4} + \frac{3}{4}$$

$$= \frac{t^{2}}{4\mu} - \frac{t^{2}}{2\mu} - \frac{2}{2\mu} + \frac{3}{2} + \frac{3}{4} + \frac{3}{8} - 2$$

$$= \frac{t^{2}}{4\mu} - \frac{3}{4} + \frac{3}{8} - 2$$

$$= \frac{1}{4\mu} - \frac{3}{4} + \frac{3}{8} - 2$$

$$= \frac{1}{4\mu} - \frac{3}{4} + \frac{3}{8} - 2$$

$$= \frac{3}{4\mu} - \frac{3}{4} + \frac{3}{8} - 2$$

$$= \frac{3}{4\mu} - \frac{3}{4} + \frac{3}{8} - 2$$

$$= \frac{3}{4\mu} - \frac{3}{4} + \frac{3}{8} - 2$$

$$= \frac{1}{4\mu} - \frac{3}{4} + \frac{3}{8} - 2$$

$$= \frac{1}{4\mu} - \frac{3}{4} + \frac{3}{8} - 2$$

$$= \frac{3}{4\mu} - \frac{3}{4} + \frac{3}{8} - 2$$

$$= \frac{3}{4\mu} - \frac{3}{4} + \frac{3}{8} - 2$$

$$= \frac{1}{4\mu} - \frac{3}{4} + \frac{3}{8} - 2$$

$$= \frac{3}{4\mu} - \frac{3}{4} + \frac{3}{8} - \frac{3}{8} -$$

Example 2 – Secular Equations

Given:
$$\psi = \phi_{1c_{1}} + \phi_{2c_{2}}$$

 $\phi_{1} \\ \phi_{2} \\ \phi_{1} \\ \phi_{1} \\ \phi_{1} \\ \phi_{1} \\ \phi_{2} \\ \phi_{1} \\ \phi_{1} \\ \phi_{2} \\ \phi_{1} \\ \phi_{2} \\ \phi_{2} \\ \phi_{1} \\ \phi_{2} \\ \phi_{2} \\ \phi_{2} \\ \phi_{1} \\ \phi_{2} \\ \phi_{2} \\ \phi_{2} \\ \phi_{1} \\ \phi_{2} \\ \phi_{2} \\ \phi_{2} \\ \phi_{2} \\ \phi_{1} \\ \phi_{2} \\ \phi_{1} \\ \phi_{1} \\ \phi_{2} \\ \phi_{2} \\ \phi_{2} \\ \phi_{2}$

$$\begin{aligned} \leq \psi \parallel H \mid \psi \geq = \langle c_1 \phi_1 + c_2 \phi_2 \mid H \mid c_1 \phi_1 + c_2 \phi_2 \rangle \\ = c_1 \geq c_1 |H \mid \phi_1 \rangle + c_1 c_2 \langle \phi_1 \mid H \mid \phi_2 \rangle \\ + c_2 c_1 \leq d_2 |H \mid \phi_1 \rangle + c_2 \geq \langle \phi_2 \mid H \mid \phi_2 \rangle \end{aligned}$$

= c, 2 x, + 2 c, cz B + c2 x2

$$\begin{aligned} \zeta \psi |\psi\rangle &= \zeta_{1}^{2} + \zeta_{2}^{2} \qquad (by \text{ orthonormality} \\ \quad = df di, dy_{2}) \\ &\stackrel{-}{\rightarrow} \xi = \frac{1}{2} \alpha_{1} + 2\zeta_{1}\zeta_{2}\beta + Z_{2}\alpha_{1} \\ \frac{\partial E}{\partial \zeta_{1}} = b = \frac{\partial E}{\partial \zeta_{1}} \\ \frac{\partial E}{\partial \zeta_{1}} = b = \frac{\partial E}{\partial \zeta_{1}} \\ \frac{\partial E}{\partial \zeta_{1}} = \frac{2}{\zeta_{1}^{2} + \zeta_{2}^{2}} \qquad -\frac{2}{\zeta_{1}^{2} + \zeta_{2}^{2}} \\ \frac{\partial E}{\partial \zeta_{1}} = \frac{2}{\zeta_{1}^{2} + \zeta_{2}^{2}} \qquad -\frac{2}{\zeta_{1}^{2} + \zeta_{2}^{2}} \\ \frac{\partial E}{\partial \zeta_{2}} = \frac{2}{\zeta_{1}^{2} + \zeta_{2}^{2}} \qquad -\frac{2}{\zeta_{1}^{2} + \zeta_{2}^{2}} \\ \frac{\partial E}{\partial \zeta_{2}} = \frac{2}{\zeta_{1}^{2} + \zeta_{2}^{2}} \qquad -\frac{2}{\zeta_{1}^{2} + \zeta_{2}^{2}} \\ = 0 \quad \text{when } 2\zeta_{1}\beta + 2\zeta_{2}(\alpha - E) = 0 \\ \text{Variational - Principle:} \\ \zeta \alpha_{1} - E \right) c_{1}f \quad \beta c_{2} = 0 \qquad \int -\frac{2}{\zeta_{1}} \frac{3}{\zeta_{1}} \\ = 0 \quad \text{when } 2\zeta_{1}\beta + 2\zeta_{2}(\alpha - E) = 0 \\ \text{Variational - Principle:} \\ \zeta \alpha_{1} - E \right) c_{1}f \quad \beta c_{2} = 0 \qquad \int -\frac{2}{\zeta_{1}} \frac{3}{\zeta_{2}} \\ = 0 \quad \text{when } 2\zeta_{2}\beta + 2\zeta_{2}(\alpha - E) = 0 \\ \text{Variational - Principle:} \\ \zeta \alpha_{1} - E \right) c_{1}f \quad \beta c_{2} = 0 \qquad \int -\frac{2}{\zeta_{1}} \frac{3}{\zeta_{2}} \\ = 0 \quad \text{when } 2\zeta_{2}\beta + 2\zeta_{2}(\alpha - E) = 0 \\ \text{Variational - Principle:} \\ \beta c_{1}f + (\alpha_{2} - E)c_{1} = 0 \qquad \int -\frac{2}{\zeta_{1}} \frac{3}{\zeta_{2}} \\ = 0 \quad \text{when } 2\zeta_{2}\beta + 2\zeta_{2}(\alpha - E) = 0 \\ \text{Variational - Principle:} \\ \beta c_{1}f + (\alpha_{2} - E)c_{1} = 0 \qquad \int -\frac{2}{\zeta_{1}} \frac{3}{\zeta_{2}} \\ = 0 \quad \text{when } 2\zeta_{2}\beta + 2$$

$$\begin{vmatrix} \alpha_{1}-\varepsilon & \beta \\ \beta & \alpha_{2}-\varepsilon \end{vmatrix} = (\alpha_{1}-\varepsilon)(\alpha_{2}-\varepsilon) - \beta^{2}$$

$$= \varepsilon^{2} - (\alpha_{1}+\alpha_{2})\varepsilon + \alpha_{1}\alpha_{2} - \beta^{2} = 0$$

$$\varepsilon_{\pm} = \frac{1}{2}(\alpha_{1}+\alpha_{2})\pm \frac{1}{2}\sqrt{(\alpha_{1}+\alpha_{2})^{2} - 4(\alpha_{1}\alpha_{2}-\beta^{2})}$$

$$= \frac{1}{2}(\alpha_{1}+\alpha_{2})\pm \sqrt{(\alpha_{1}-\alpha_{2})^{2} + 4\beta^{2}}$$

When $\alpha_1 = \alpha_2 = \alpha$

=)
$$E_{\pm} = \alpha \pm |\beta|$$

 $c_2 = -c_1$ when $E = E_{\pm}$
Normalise, $\zeta \psi |\psi\rangle = c_1^2 + c_2^2 = 1$
 $= c_1 = \frac{1}{\sqrt{2}} = -c_2$
 $\Rightarrow \psi_{\pm} = \frac{1}{\sqrt{2}}(\phi_1 - \phi_2)$

Similarly
$$E = E = 3 = c_2 = +c_1$$

= $y_{=} = \frac{1}{\sqrt{2}} (d_1 + d_2)$