GENERAL ORGANIC MECHANISMS NOTES

Acids & Bases

Strengths of H-A are expressed on the pK_a scale, where $pK_a = -\log_{10} K_a$. In order to have a unified scale for H-A and B strength, the acid strength of BH⁺ rather than base strength of B is usually listed. If required, the latter value is easily calculated from the former.

As acid strength increases, K_a increases, pK_a decreases. As the base strength of B increases K_b increases and pK_a (of BH⁺) increases.

Acid	pKa	pK₄ of BH⁺
HCI	-7	
CCI ₃ CO ₂ H	0.9	
CICH ₂ CO ₂ H	2.8	
PhCO₂H	4.2	
MeCO ₂ H	4.8	
O ₂ N-Ph-CO ₂ H	7.2	
CH ₃ COCH ₂ COCH ₃	9	
HCN	9.2	
PhOH	10	
$CH_2(CO_2Et)_2$	13	
Neutral		
H ₂ O	15.7	
MeCHO	17	
EtOH	18	
Base		
O ₂ N-Ph-NH ₂	19	1.0
Me ₂ CO	20	
PhNH₂	~27	4.6
Pyridine		5.3
NH ₃	~36	9.2
MeNH ₂	~37	10.4
Piperidine		11.2
ОН		15.7
CH ₄	~50	

Some pK_a's:

Factors Determining Acidity:

- 1) Weak A-H bond.
- 2) Electronegativity of A-H bond.
- 3) Stability of anion after H⁺ lost (drives equilibrium to the right), e.g. inductive or mesomeric stabilisation of the negative charge, or lower hybridisation. Also stereoelectronic effects, e.g. bridgeheads can prevent the molecule becoming planar.
- 4) Solvation effects.

- (iii) L⁻ becomes a poorer leaving group.
- (iv) Size of B increases.
- (v) Size of R or L increases.

E1 Reactions

Other routes to alkenes include the Wittig Reaction (see Organoelements Notes) and the McMurray Coupling Reaction:

$$c = 0 + 0 = c \left(\xrightarrow{\text{Tr}^{\circ} / \Lambda} c = c \left(+ \text{TiO}_{4} \right) \right)$$

Also syn eliminations:

Note also that H-L does not have to be eliminated, can eliminate e.g. L-L:

Alkenes

Addition to C=C bonds can take a variety of pathways.

Stepwise addition via a non-bridged intermediate usually gives rise a mixture of syn and anti products, although the anti tends to dominate. HX and H-OH react by this pathway.

Bridged intermediates tend to be by X_2 and HO-X, the halonium being formed in both cases. Anti addition then results.

Concerted addition is also known for a variety of reagents:

Alkynes

Alkynes can be synthesised from alkenes by first adding Br₂ across the double bond, and then eliminating twice using NaNH₂ in liquid NH₃. Similarly, diketones can be converted to alkynes by adding hydrazine. This forms a diazo intermediate at each C=O bond, which rapidly eliminates $2N_2$ to leave an alkyne.

Their principle use is in carbon-carbon bond forming reactions, as the H is acidic due to the sp hybridised carbon, so metallation is easy. They can be subsequently reduced by Lindlar's catalyst + H_2 , or Na in NH₃ (methods give cis and trans respectively).

Alcohols

Chemistry of these is somewhat obvious. Particular reactions worth knowing are the methods of oxidation of 1,2-diols:

NaIO₄ and Pb(OAc)₄ oxidations:

Carbonyls & Esters

Mechanisms for Ester Hydrolysis

There are actually 8 possible mechanisms for this. The terminology used is A/B for acid/base catalysed, then a subscript **Ac/AI** for **acyl/alkyI** bond cleavage respectively, and finally 1 or 2 for uni-/bi-molecular rate determining step. There are two unknown mechanisms of the 8, these are the A_{AI}^2 and B_{Ac}^{-1} . Some of the others are very uncommon as well.

$$B_{AC}^2 -$$

- Most common method for hydrolysis of simple alkyl esters (Me, Et, Ph, etc).
- ¹⁸O incorporation experiments show acyl-oxygen cleavage.
- OH⁻ attack to form tetrahedral intermediate is rate determining.
- Carboxylic acid deprotonation renders reaction essentially irreversible.

- Less common. Mechanism observed for Me esters and β-lactones.
- It requires a good nucleophile such as I⁻ or PhSe⁻.
- Pyridine traps the CH₃I as a salt to displace the equilibrium to the right.

 A_{Ac}^2 –

 $A_{AL}^1 -$

- •
- Acid catalysed equivalent of B_{AC}² mechanism. Has been proven by ¹⁸O substitution and NMR studies.
- More commonly used in reverse in ester formation.

$$H^{+} = H^{+} = H^{+$$

- Mechanism observed for RCO₂R' where R' can form a stable carbocation on • alkyl-oxygen cleavage, e.g. $R' = {}^{t}butyl$, CHPh₂.
- Can be used in reverse for formation of these esters (e.g. $RCO_2H + 2$ -• methylpropene + H^+).

- Occurs for RCO₂R' where R is bulky (i.e. a tetrahedral intermediate would be too • hindered).
- Occurs via an acyl cation, and only in powerfully ionising solvents. •

Meerwein-Ponndorf-Varley Reaction

Equilibrium reaction, so can be reversed – oxidising secondary alcohols to ketones by treatment with excess acetone (normally called Oppenhauer Oxidation).

PhcHo
$$\xrightarrow{i}$$
 PhcH₂OH + Ph Cq H i. conc. NaOH; ii, H[®]
Ho[®] \xrightarrow{Ph} \xrightarrow{Ph}

Reformatsky Reaction

Me co / Br ch ca Et /Zn	> Me, CCH, CO, Et
Via a complex Zn	after mild H®
enolate	Workup

Stobbe Reaction

Darzen's Reaction